
shapes
User Guide

∗

Zdzis law Meglicki

Indiana University

March 14, 2006

Version $Id: UG.tex,v 1.76 2006/03/14 23:12:36 meglicki Exp $

Contents

1 What Is shapes 3

2 How shapes Works 3

2.1 Maxwell Equations . 3
2.2 Solving the Media Equation . 5
2.3 Absorbing Boundary Conditions . 7
2.4 Signal Injection and Discretization . 9
2.5 Spectral Response . 16
2.6 Multigrid . 16

2.6.1 Multigrid Time Step . 18
2.6.2 Building Higher Levels . 22

2.7 Parallelization . 23
2.8 Output . 24

3 How to Use shapes 27

3.1 A Simple Jazz Example . 27
3.2 A Simple TeraGrid Example . 34
3.3 The shapes Input File . 38

3.3.1 The chat and watch Groups . 38
3.3.2 The level0 Group . 40
3.3.3 The iterate Group . 41
3.3.4 The pml Group . 43
3.3.5 The signal Group . 44
3.3.6 The metal Group . 46
3.3.7 The tag Group . 59
3.3.8 The refine Group . 63
3.3.9 The spectral Group . 64
3.3.10 The output Group . 64

∗

shapes was developed for the Argonne National Laboratory under a contract with Indiana University

1

4 Parallel Execution 66

4.1 TeraGrid example . 66
4.2 Jazz Example . 69
4.3 Working with ChomboVis on Jazz . 72

5 Working with Multigrid 78

5.1 A Simple Example without Media . 78
5.2 A Classic Example in Parallel . 86
5.3 The Cost of High Resolution . 97
5.4 Variations . 99

References 103

Index 105

2

1 What Is shapes

shapes

is a finite difference time domain (FDTD) program that simulates scattering of electromag-
netic waves on objects of various shapes made of various substances. The program provides a small number
of primitive shapes from which more complex shapes can be easily assembled—hence the name.

shapes can be run sequentially or in parallel on a cluster. Additionally, shapes can perform compu-
tations on a multigrid, allowing users to zoom on regions of special interest.

shapes produces two types of output: diagnostics that are written on standard output or, in case of
parallel execution, on special files associated with MPI processes, and field images that are written on
human readable text files or on HDF5 files. The text files are formatted for display with Gnuplot. The
HDF5 files are generated in parallel on a parallel file system and images stored on them viewed with a
special utility called ChomboVis.

The field images produced by shapes also can be assembled into animations.
The shapes code comprises two components that interact with each other: a C++ Chombo [1] [2] shell

that manages data flow, time stepping, parallelization, multigrid and I/O, and Fortran-77 subroutines that
express raw computations and basic algorithms.

Chombo is an object-oriented toolkit for adaptive mesh refinement (AMR) (i.e., flowing multigrid)
programming. With shapes the flowing of the AMR multigrid is seldom needed, but it is provided. The
various objects on which electromagnetic waves scatter in shapes simulations do not move. It is therefore
more efficient to wrap the objects in static multigrids. The Chombo toolkit works either way.

Currently shapes performs its computations in two dimensions only, but three-dimensional simulations
will be possible in the near future.

2 How shapes Works

shapes
uses a number of simple algorithms that are well known in the FDTD community [6], most no-

tably FDTD itself, perfectly matched layer (PML) absorbing boundary conditions (ABCs), total/scattered
field regions, and auxiliary differential equations (ADEs) that are used to evaluate material response.

The computations are carried out in natural units, defined by setting the speed of light to 1. Both ε0

and µ0 are absorbed into redefined D and E (see Section 2.1). This approach greatly simplifies Maxwell
equations, improves computational accuracy (everything is always close to 1), speeds the code’s perfor-
mance, and facilitates interpretation of the results. Input is likewise expected in natural units, and output
is written in natural units as well. It is easy to convert data between natural and conventional (for example,
SI, CGS) units, and a detailed procedure illustrated by specific examples is discussed in Section 3.

2.1 Maxwell Equations

The specific form of Maxwell equations solved by shapes is as follows.

∂tD = ∇×H

3

D(ω) = ε0

(

ε∞ +
∑

k

εk

αk + i2δk(ω/ωk)− (ω/ωk)2

)

E(ω)

∂tH = − 1

µ0
∇×E

First we absorb ε0 and µ0 into D and E,

Ẽ =

√

ε0

µ0
E

D̃ =

√

1

ε0µ0
D

c =

√

1

ε0µ0
,

where c is the speed of light in a vacuum. The resulting Maxwell equations are now

∂tD̃ = c∇×H

D̃(ω) = κ(ω)Ẽ(ω)

∂tH = −c∇× Ẽ,

where
κ(ω) = ε∞ +

∑

k

εk

αk + i2δk(ω/ωk)− (ω/ωk)2
.

Dropping the tildes and using c = 1, we have

∂tD = ∇×H

D(ω) = κ(ω)E(ω)

∂tH = −∇×E.

The expression for κ(ω) covers simultaneously the Drude and multiple-resonance Lorentz models. Indeed,
the substitutions

αk ← 0

δk ← ΓD

2ωD

εk ← 1

ε∞ ← 1

yield the Drude term

1 +
ω2

D

−ω2 + iΓDω
.

The ΓD coefficient is also written as 1/τD, where τD is the collision time.
The combined Drude/Lorentz model is quite general. It covers substances such as unmagnetized plasma,

metals, dielectrics, human muscle tissue, and other materials that have simultaneously dielectric and
conducting properties. At the same time, though, this material model is still linear, and as such it is not
suitable for modeling of active photonic devices, such as switches or amplifiers.

shapes lets the user define an arbitrary number of media using an arbitrary number of resonances per
medium. The media types can then be assigned to an arbitrary number of figures of various shapes.

4

We note that αk, δk and εk are all dimensionless quantities, as is ε∞. Hence they can be evaluated in
any system of units, and the numbers can simply be plugged into the shapes input file. No conversions
are needed. The only quantity that has to be converted to natural units is ωk, which must be re-expressed
in terms of the inverse of the natural unit of time.

2.2 Solving the Media Equation

The media equation

D(ω) =

(

ε∞ +
∑

k

εk

αk + i2δk(ω/ωk)− (ω/ωk)2

)

E(ω) (1)

can be solved by using the auxiliary differential equation (ADE) method. Let us rewrite the above equation
as

D(ω) = ε∞E(ω) +
∑

k

Sk(ω), (2)

where
Sk(ω) =

εk

αk + i2δk(ω/ωk)− (ω/ωk)2
E(ω). (3)

Suppose Sk(r, t) = eiωt
Sk0(r). Then

∂

∂t
Sk(r, t) = iωSk(r, t)

and
∂2

∂t2
Sk(r, t) = (iω)2Sk(r, t).

Equation (3) can then be read as

∂2

∂t2
Sk(r, t) + 2ωkδk

∂

∂t
S(r, t) + αkω

2
kSk(r, t) = εkω

2
kE(r, t). (4)

Since we don’t have any space derivatives here, we can treat this equation as an ordinary differential
equation at each point r and drop the latter from the notation for simplicity. The partial derivatives then
become ordinary derivatives, d/dt and d2/dt2. We introduce the following finite difference approximations
for the derivatives at t = t(n):

d2

dt2
Sk(t) ≈

S
(n+1)
k

−S
(n)
k

t(n+1)
−t(n) −

S
(n)
k

−S
(n−1)
k

t(n)
−t(n−1)

t(n+1/2) − t(n−1/2)
.

Assuming that t(n+1) − t(n) = t(n) − t(n−1) = ∆t and t(n+1/2) − t(n−1/2) = ∆t, we get

d2

dt2
Sk(t) ≈

S
(n+1)
k − 2S

(n)
k + S

(n−1)
k

∆t2
.

We also stretch the first derivative over the [t(n+1), t(n−1)] segment as follows:

d

dt
Sk(t) ≈

S
(n+1)
k − S

(n−1)
k

2∆t
,

which yields the following finite difference approximation of equation (4):

S
(n+1)
k − 2S

(n)
k + S

(n−1)
k

∆t2
+ 2ωkδk

S
(n+1)
k − S

(n−1)
k

2∆t
+ αkω

2
kS

(n)
k = εkω

2
kE

(n).

5

Solving this for S
(n+1)
k yields

S
(n+1)
k

(

1

∆t2
+

ωkδk

∆t

)

= S
(n)
k

(

2

∆t2
− αkω

2
k

)

+ S
(n−1)
k

(

ωkδk

∆t
− 1

∆t2

)

+ εkω
2
kE

(n).

We multiply both sides by ∆t2:

S
(n+1)
k (1 + ωkδk∆t) = S

(n)
k

(

2− αkω
2
k∆t2

)

− S
(n−1)
k (1− ωkδk∆t) + E

(n)εkω
2
k∆t2.

Finally we divide both sides by 1 + ωkδk∆t and get

S
(n+1)
k =

2− αkω
2
k∆t2

1 + ωkδk∆t
S

(n)
k − 1− ωkδk∆t

1 + ωkδk∆t
S

(n−1)
k +

εkω
2
k∆t2

1 + ωkδk∆t
E

(n).

Renumbering this equation down by one notch, namely, n + 1→ n, n→ n− 1, and n− 1→ n− 2, yields

S
(n)
k =

2− αkω
2
k∆t2

1 + ωkδk∆t
S

(n−1)
k − 1− ωkδk∆t

1 + ωkδk∆t
S

(n−2)
k +

εkω
2
k∆t2

1 + ωkδk∆t
E

(n−1). (5)

Returning to the original equation (2)

D(ω) = ε∞E(ω) +
∑

k

Sk(ω)

and using the linearity of the Fourier transform, we can write

D(t) = ε∞E(t) +
∑

k

Sk(t)

or

E(t) =
1

ε∞

(

D(t)−
∑

k

Sk(t)

)

or, in the discretized form,

E
(n) =

1

ε∞

(

D
(n) −

∑

k

S
(n)
k

)

, (6)

where for each k, S
(n)
k can be evaluated from S

(n−1)
k , S

(n−2)
k and E

(n−1) according to equation (5).
The following simple procedure implements this formula within each time step. Apart from E and Sk

we also need Eold and Skold for each k.

Eold ← E

E ← D

where media is present

repeat for k = 1 to number of resonances

hold← Sk

Sk ←
2−αkω2

k
∆t2

1+ωkδk∆t Sk − 1−ωkδk∆t
1+ωkδk∆tSkold +

εkω2
k
∆t2

1+ωkδk∆tEold

Skold ← hold

E ← E − Sk

end repeat

E ← E/ε∞
end where

6

Observe that the number of Sk and Skold fields required is equal to the number of resonances. For example,
a formula with three resonances will require six S fields including the “old” ones. But multiple media can
be covered by the same set of S fields; that is, we do not need to proliferate them if we have multiple
media. All that needs to be done is to let the αk, δk, εk, ωk, and ε∞ coefficients vary with r. The C++
Chombo shell of shapes dynamically allocates all S fields and appropriate arrays of media coefficients
after reading the input file.

Using ADEs has its limitations. The Courant Friedrichs Lewy (CFL) stability criterion that applies
to vacuum Maxwell equations may not necessarily apply to ADEs. Furthermore, even if we can avoid an
ADE blowup, we may still introduce inaccuracy into the ADE evaluation by taking too long a time step.

2.3 Absorbing Boundary Conditions

The (Ex, Ey,Hz) mode Maxwell equations in natural units and in the frequency domain look as follows.

iωDx = ∂yHz

iωDy = −∂xHz

Dx = εEx

Dy = εEy

iωHz = ∂yEx − ∂xEy

To absorb an incident signal within a thin boundary layer, we introduce three functions of position, βx,
βy, and αz, inserting them in the frequency domain equations

iωDxβx(x)βy(y) = ∂yHz

iωDyβy(x)βx(y) = −∂xHz

Dx = εEx

Dy = εEy

iωHzαz(x)αz(y) = ∂yEx − ∂xEy

Functions βx, βy, and αz form perfectly matched layer (PML) absorbing boundary conditions (ABCs)
when [3] [5]

βx = 1/βy

αz = βy.

Without much loss in generality we can assume the following form for αz = βy = 1/βx [4] [5]:

αz = 1 +
σ

iω

βx =
1

1 + σ
iω

βy = 1 +
σ

iω
,

where σ is a function of depth into the PML layer from within the computational domain. It is equal to
zero within the computational domain.

With these in place our frequency domain Maxwell equations become

iωDx

(

1 +
σ(y)

iω

)

=

(

1 +
σ(x)

iω

)

∂yHz

7

iωDy

(

1 +
σ(x)

iω

)

= −
(

1 +
σ(y)

iω

)

∂xHz

Dx = εEx

Dy = εEy

iωHz

(

1 +
σ(x)

iω

)(

1 +
σ(y)

iω

)

= ∂yEx − ∂xEy.

Converting from the frequency to the time domain yields

∂tDx + σ(y)Dx = ∂yHz + σ(x)

∫ t

0
∂yHz dt′

∂tDy + σ(x)Dy = −∂xHz − σ(y)

∫ t

0
∂xHz dt′

Dx = εEx

Dy = εEy

∂tHz + σ(x)Hz + σ(y)Hz = ∂yEx − ∂xEy − σ(x)σ(y)

∫ t

0
Hz dt′.

The product of two sigmas, σ(x)σ(y), vanishes everywhere with the exception of the corners, where both �
σ(x) and σ(y) are different from zero. Furthermore, for an oscillating Hz the integral

∫ t
0 Hz dt′ is going to

be zero on average. Consequently, we neglect this term altogether in these computations, so that the last
equation simplifies to

∂tHz + σ(x)Hz + σ(y)Hz = ∂yEx − ∂xEy.

In leap-frog discretization of these time-domain equations, we evaluate non differentiated terms on the
left-hand side at the same time slice as the derivatives and as the right-hand side. This approach results

in the replacement of, for example, D
(n)
x with

(

D
(n)
x + D

(n−1)
x

)

/2—with the following effect:

D(n)
x = D(n−1)

x

1− σ(y)∆t/2

1 + σ(y)∆t/2
+

∆t

1 + σ(y)∆t/2

(

∂yH
(n−1)
z +

σ(x)∆t

2

n−1
∑

k=0

2∂yH
(k)
z

)

D(n)
y = D(n−1)

y

1− σ(x)∆t/2

1 + σ(x)∆t/2
− ∆t

1 + σ(x)∆t/2

(

∂xH(n−1)
z +

σ(y)∆t

2

n−1
∑

k=0

2∂xH(k)
z

)

D(n)
x = εE(n)

x

D(n)
y = εE(n)

y

H(n)
z = H(n−1)

z

1− σ(x)∆t/2 − σ(y)∆t/2

1 + σ(x)∆t/2 + σ(y)∆t/2
+

∆t

1 + σ(x)∆t/2 + σ(y)∆t/2

(

∂yE
(n)
x − ∂xE(n)

y

)

.

The last equation, for H
(n)
z , can be rewritten as

H(n)
z = H(n−1)

z

(

1− σ(x)∆t/2

1 + σ(x)∆t/2

)(

1− σ(y)∆t/2

1 + σ(y)∆t/2

)

+∆t

(

1

1 + σ(x)∆t/2

)(

1

1 + σ(y)∆t/2

)

(

∂yE
(n)
x − ∂xE(n)

y

)

within O(∆t)2 accuracy.
Following [5], we replace σ(x)∆t/2 with

σ(x)∆t

2
= f(x) =

1

3

(

depth into the PML layer

width of the PML layer

)3

8

so that the PML equations are

D(n)
x = D(n−1)

x

1− f(y)

1 + f(y)
+

1

1 + f(y)

(

∂yH
(n−1)
z + f(x)

n−1
∑

k=0

2∂yH
(k)
z

)

∆t (7)

D(n)
y = D(n−1)

y

1− f(x)

1 + f(x)
− 1

1 + f(x)

(

∂xH(n−1)
z + f(y)

n−1
∑

k=0

2∂xH(k)
z

)

∆t (8)

D(n)
x = εE(n)

x (9)

D(n)
y = εE(n)

y (10)

H(n)
z = H(n−1)

z

(

1− f(x)

1 + f(x)

)(

1− f(y)

1 + f(y)

)

+

(

1

1 + f(x)

)(

1

1 + f(y)

)

(

∂yE
(n)
x − ∂xE(n)

y

)

∆t. (11)

shapes implements f(x) functionally, not as a table. The two accumulation terms
∑n−1

k=0 2∂yH
(k)
z and

∑n−1
k=0 2∂xH

(k)
z are implemented as additional fields, but these are restricted to level 0 because PML ABCs

are handled within this level only. Generation of subgrids and location of media are restricted to the
interior of the total field region, which is far from the boundaries of the computational domain.

2.4 Signal Injection and Discretization

Signals of various types are injected into the total field region. Before we discuss the injection and extraction
mechanism, let us focus first on the signal itself.

Suppose Hz(x, y, t) is given by

Hz = f(ζ), where ζ = nxx + nyy − t,

where f is an arbitrary function of one variable, called ζ here, and n2
x + n2

y = 1.
It is easy to build a valid Maxwell equations solution around Hz so defined.
For an arbitrary f(ζ) we have that

∂tf(ζ) = f ′(ζ) ∂tζ = −f ′(ζ)

∂xf(ζ) = f ′(ζ) ∂xζ = nxf ′(ζ)

∂yf(ζ) = f ′(ζ) ∂yζ = nyf
′(ζ)

Let

Ex = g(ζ)

Ey = h(ζ).

Hence the equations

∂tEx = −g′(ζ) = ∂yHz = ∂yf(ζ) = nyf
′(ζ)

∂tEy = −h′(ζ) = −∂xHz = −∂xf(ζ) = −nxf ′(ζ)

can be satisfied easily by setting

Ex = g(ζ) = −nyf(ζ)

Ey = h(ζ) = nxf(ζ).

9

Indeed, in this case we have

∂tEx = −ny∂tf(ζ) = nyf
′ζ = ∂yHz

∂tEy = nx∂tf(ζ) = −nxf
′(ζ) = −∂xHz,

which is a trivial restatement of the above, but we also have that

− (∂xEy − ∂yEx) = − (nx∂xf(ζ) + ny∂yf(ζ))

= −
(

nxnxf ′(ζ) + nynyf
′(ζ)
)

= −(n2
x + n2

y)f
′(ζ)

= −f ′(ζ) = ∂tHz

because n2
x + n2

y = 1.
In summary, for an arbitrarily shaped f(ζ), we have the following:

Hz = f(ζ)

Ex = −nyf(ζ)

Ey = nxf(ζ),

where ζ = nxx + nyy − t and n2
x + n2

y = 1 satisfy Maxwell equations.
We can generalize ζ even more by adding constant offsets to x, y, and t:

ζ = nx(x− x0) + ny(y − y0)− (t− t0).

shapes provides numerous signals, listed in Table 1. More can be added trivially on request.

Table 1: Signals provided by shapes.

Mode Description Formula

0 nothing
1 harmonic wave f(ζ) = sin

(

2π
λ

ζ
)

2 step ramped harmonic wave f(ζ) = θ(−ζ) sin
(

2π
λ

ζ
)

3 tanh ramped harmonic wave f(ζ) = 1
2 (1− tanh(αζ)) sin

(

2π
λ

ζ
)

4 Gaussian pulse f(ζ) = exp
(

− ζ2

2σ2

)

5 Gaussian envelope harmonic wave f(ζ) = exp
(

− ζ2

2σ2

)

sin
(

2π
λ

ζ
)

6 Gaussian envelope linear chirp f(ζ) = exp
(

− ζ2

2σ2

)

sin
(

2π
λ+βζ

ζ
)

7 Gaussian envelope quadratic chirp f(ζ) = exp
(

− ζ2

2σ2

)

sin
(

2π
λ+βζ2 ζ

)

8 Gaussian envelope exp chirp f(ζ) = exp
(

− ζ2

2σ2

)

sin
(

2π
λ+α exp(βζ)ζ

)

9 Gaussian envelope sin chirp f(ζ) = exp
(

− ζ2

2σ2

)

sin
(

2π
λ+α sin(βζ)ζ

)

10 Gaussian envelope tanh chirp f(ζ) = exp
(

− ζ2

2σ2

)

sin
(

2π
λ+α tanh(βζ)ζ

)

11 Gaussian envelope Gaussian chirp f(ζ) = exp
(

− ζ2

2σ2

)

sin

(

2π

λ+α exp
“

−

ζ2

2β2

”ζ

)

The user specifies the signal mode on the input file, followed by nx, ny, α, β, σ, and λ as required
by the chosen formula. The user can specify t0, too, in order to delay the injection of the signal into the

10

total field region. But x0 and y0 are chosen by the program automatically, depending on the direction from
which the signal is injected.

Of the 11 signals listed above, modes 0 and 1 are provided only for completeness. Mode 6, the Gaussian
envelope linear chirp, is somewhat dangerous because it is easy to generate a division by zero in the sine
function: as the program iterates, ζ moves toward negative numbers. But quadratic and tanh chirps are
useful. The tanh chirp is basically like a linear chirp but restricted to an (almost) linear variation between
some minimum and maximum value of the wavelength. One should take care to resolve the signal properly
at its shortest wavelength component.

It is generally a good idea to choose the signal parameters carefully and inspect function f(ζ), for
example, with Gnuplot, for the whole span of ζ that is to be covered by shapes. It is easy to design a
chirp signal so that a complicated beat may result instead of a gradually changing wave. Figure 1 shows

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-200 -150 -100 -50 0 50 100 150 200

f(z)

Figure 1: Gaussian envelope tanh chirp for α = 10, β = 0.015, σ = 60, and λ = 20. The effective wavelength
varies between 10 and 30. The signal moves to the right.

an example signal of a Gaussian envelope tanh chirp for α = 10, β = 0.015, σ = 60, and λ = 20.
The incident field is injected into the total field region and then extracted from it by tweaking appro-

priate field derivatives on the border of the region. One of the signal analytical formulas discussed above,
as selected by the user, is used to propagate the field along the boundary, whereas propagation of the
field within the total field region is numerical. This strategy has the advantage of letting us observe the
effects of numerical dispersion and test the accuracy of the solution method—covering also the accuracy
of multilevel computations. On the other hand, it has a disadvantage as well because of numerical disper-
sion analytically, and numerically propagated pulses eventually diverge, resulting in a small, unsubtracted
signal within the scattered field region, especially toward the end of pulse or wave propagation within the
total field region. But this signal is absorbed by PML ABCs and does not enter the total field region. It

11

can be minimized by resolving the injected signal better.

HzDy

Dx

ia ib

ja

jb

Figure 2: Definition of total and scattered field regions laid out on top of a staggered grid. The total
field region is within the rectangle defined by (ia, ja) and (ib, jb). Everything outside this rectangle is the
scattered field region. Magnetic field Hz is cell-centered (black dots). Field Dy is side-centered to the
left of Hz, and field Dx is side-centered below Hz. In other words, Hz(i, j) ≡ Hz(x0 + i∆x, y0 + j∆y),
Dx(i, j) ≡ Dx(x0 + i∆x, y0 + j∆y −∆y/2) and Dy(i, j) ≡ Dy(x0 + i∆x−∆x/2, y0 + j∆y).

Figure 2 illustrates the total and scattered field regions, with the total field region enclosed within a
rectangle defined by (ia, ja) and (ib, jb).

Maxwell equations in the (Ex, Ey,Hz) mode are

∂tD = ∇×H = (∂yHz) ex − (∂xHz)ey

D = εE

∂tH = −∇×E = − (∂xEy − ∂yEx) ez

and are discretized as follows (see Figure 2):

D
(n)
x (i, j) −D

(n−1)
x (i, j)

∆t
=

H
(n−1)
z (i, j) −H

(n−1)
z (i, j − 1)

∆y

D
(n)
y (i, j) −D

(n−1)
y (i, j)

∆t
= −H

(n−1)
z (i, j) −H

(n−1)
z (i− 1, j)

∆x

D(n)
x (i, j) = εE(n)

x (i, j)

12

D(n)
y (i, j) = εE(n)

y (i, j)

H
(n)
z (i, j) −H

(n−1)
z (i, j)

∆t
= −

(

E
(n)
y (i + 1, j) − E

(n)
y (i, j)

∆x
− E

(n)
x (i, j + 1)− E

(n)
x (i, j)

∆y

)

which is solved to yield

D(n)
x (i, j) = D(n−1)

x (i, j) +
H

(n−1)
z (i, j) −H

(n−1)
z (i, j − 1)

∆y
∆t (12)

D(n)
y (i, j) = D(n−1)

y (i, j) − H
(n−1)
z (i, j) −H

(n−1)
z (i− 1, j)

∆x
∆t (13)

D(n)
x (i, j) = εE(n)

x (i, j) (14)

D(n)
y (i, j) = εE(n)

y (i, j) (15)

H(n)
z (i, j) = H(n−1)

z (i, j) −
(

E
(n)
y (i + 1, j) − E

(n)
y (i, j)

∆x
− E

(n)
x (i, j + 1)− E

(n)
x (i, j)

∆y

)

∆t. (16)

Now consider the update of Dy(ia, j) for ja ∈ [ja, jb]:

D(n)
y (ia, j) = D(n−1)

y (ia, j) −
H

(n−1)
z (ia, j) −H

(n−1)
z (ia − 1, j)

∆x
∆t.

Here H
(n−1)
z (ia, j) is inside the total field region, but D

(n)
y (ia, j), D

(n−1)
y (ia, j) and H

(n−1)
z (ia − 1, j) are

outside. The inside value of H
(n−1)
z (ia, j) has the incident field component, which we must subtract from

it so that the update within the scattered field region is correct. There is no injected signal in the scattered
field region. Consequently

D(n)
y (ia, j) = D(n−1)

y (ia, j) −

(

H
(n−1)
z (ia, j) −H

(n−1)
z inc(ia, j)

)

−H
(n−1)
z (ia − 1, j)

∆x
∆t

= D(n)
y no−inc

(ia, j) +
H

(n−1)
z inc(ia, j)

∆x
∆t (17)

for all j ∈ [ja, jb]. Here D
(n)
y no−inc(ia, j) is the Dy(ia, j) updated as if there were no incident signal, and

H
(n−1)
z inc(ia, j) is the incident signal. This approach lets us update Dy on the boundary using the same

routine as applicable to the total field region and then implement the signal injection as a correction on
the boundary.

Similarly for Dy(ib + 1, j) for all j ∈ [ja, jb],

D(n)
y (ib + 1, j) = D(n−1)

x (ib + 1, j) − H
(n−1)
z (ib + 1, j) −H

(n−1)
z (ib, j)

∆x
∆t

Here D
(n)
y (ib +1, j), D

(n−1)
x (ib + 1, j) and H

(n−1)
z (ib + 1, j) are outside, but H

(n−1)
z (ib, j) is inside the total

field region, and so it carries the incident field component, which we must subtract from it so that the
update within the scattered field region is correct:

D(n)
y (ib + 1, j) = D(n−1)

y (ib + 1, j) −
H

(n−1)
z (ib + 1, j) −

(

H
(n−1)
z (ib, j) −H

(n−1)
z inc(ib, j)

)

∆x
∆t

= D(n)
y no−inc

(ib + 1, j) − H
(n−1)
z inc(ib, j)

∆x
∆t (18)

13

for all j ∈ [ja, jb].

We note three important points: (1) we correct D
(n)
y (ia, j) on the left-hand side but D

(n)
y (ib + 1, j) on �

the right-hand side; (2) we add the incident signal, which is evaluated at (ia, j) on the left-hand side, but
subtract the incident signal, which is evaluated at (ib, j) on the right hand side; and (3) there is no need
for corrections to Dx at i = ia and i = ib in general, unless j = jb + 1 or j = ja.

Now let us implement similar corrections to Dx updates at j = ja and j = jb + 1. For j = ja and
i ∈ [ia, ib] we have

D(n)
x (i, ja) = D(n−1)

x (i, ja) +
H

(n−1)
z (i, ja)−H

(n−1)
z (i, ja − 1)

∆y
∆t.

Here D
(n)
x (i, ja), D

(n−1)
x (i, ja), and H

(n−1)
z (i, ja − 1) are in the scattered field region, but H

(n−1)
z (i, ja) is

in the total field region. To evaluate a correct update in the scattered field region, we must subtract the

incident signal from H
(n−1)
z (i, ja) in the total field region

D(n)
x (i, ja) = D(n−1)

x (i, ja) +

(

H
(n−1)
z (i, ja)−H

(n−1)
z inc(i, ja)

)

−H
(n−1)
z (i, ja − 1)

∆y
∆t

= D(n)
x no−inc(i, ja)−

H
(n−1)
z inc(i, ja)

∆y
∆t (19)

for all i ∈ [ia, ib].
For j = jb + 1 and i ∈ [ia, ib] we have

D(n)
x (i, jb + 1) = D(n−1)

x (i, jb + 1) +
H

(n−1)
z (i, jb + 1)−H

(n−1)
z (i, jb)

∆y
∆t.

Here D
(n)
x (i, jb +1), D

(n−1)
x (i, jb +1) and H

(n−1)
z (i, jb +1) are in the scattered field region, but H

(n−1)
z (i, jb)

is in the total field region. To evaluate a correct update in the scattered field region, we must subtract the

incident signal from H
(n−1)
z (i, jb) in the total field region

D(n)
x (i, jb + 1) = D(n−1)

x (i, jb + 1) +
H

(n−1)
z (i, jb + 1)−

(

H
(n−1)
z (i, jb)−H

(n−1)
z inc(i, jb)

)

∆y
∆t

= D(n)
x no−inc(i, jb + 1) +

H
(n−1)
z inc(i, jb)

∆y
∆t (20)

for all i ∈ [ia, ib].
This time we subtract the incident signal, which is evaluated at j = ja at the bottom, but add the

incident signal, which is evaluated at j = jb at the top. The corrections are implemented for D
(n)
x (i, ja) at

the bottom, but for D
(n)
x (i, jb + 1) at the top. There is no need for corrections to the Dy update at j = ja

and j = jb except for i = ia and i = ib + 1.
Signal injection corrections to Hz are more complicated because they have to be evaluated at all total

region boundaries.
Let us first consider equation (16) at i = ia:

H(n)
z (ia, j) = H(n−1)

z (ia, j)−
(

E
(n)
y (ia + 1, j) − E

(n)
y (ia, j)

∆x
− E

(n)
x (ia, j + 1)− E

(n)
x (ia, j)

∆y

)

∆t.

14

In this equation H
(n)
z (ia, j), H

(n−1)
z (ia, j), E

(n)
y (ia + 1, j), E

(n)
x (ia, j + 1), and E

(n)
x (ia, j) are all within the

total field region, unless j = ja or j = jb in which case E
(n)
x (ia, j) or E

(n)
x (ia, j + 1) are outside (we take

care of this later). The term that is outside, in the scattered field region for all j ∈ [ja, jb], is E
(n)
y (ia, j).

Since this term has already been processed, it doesn’t have the incident field component in it. Hence, to

make a correct update to H
(n−1)
z (ia, j), we need to add the incident field to E

(n)
y (ia, j):

H(n)
z (ia, j) = H(n−1)

z (ia, j)

−

E
(n)
y (ia + 1, j) −

(

E
(n)
y (ia, j) + E

(n)
y inc(ia, j)

)

∆x
− E

(n)
x (ia, j + 1)− E

(n)
x (ia, j)

∆y

∆t

= H(n)
z no−inc(ia, j) +

E
(n)
y inc(ia, j)

∆x
∆t. (21)

On the right-hand side, the equation is

H(n)
z (ib, j) = H(n−1)

z (ib, j)−
(

E
(n)
y (ib + 1, j) − E

(n)
y (ib, j)

∆x
− E

(n)
x (ib, j + 1)−E

(n)
x (ib, j)

∆y

)

∆t.

This time all terms are within the total field region except E
(n)
y (ib + 1, j), which is in the scattered field

region. Hence , we must again add the incident field to this term:

H(n)
z (ib, j) = H(n−1)

z (ib, j)

−

(

E
(n)
y (ib + 1, j) + E

(n)
y inc(ib + 1, j)

)

− E
(n)
y (ib, j)

∆x
− E

(n)
x (ib, j + 1)− E

(n)
x (ib, j)

∆y

∆t

= H(n)
z no−inc(ib, j)−

E
(n)
y inc(ib + 1, j)

∆x
∆t (22)

Now let us look at what happens on the j = ja and j = jb lines. At j = ja we have

H(n)
z (i, ja) = H(n−1)

z (i, ja)−
(

E
(n)
y (i + 1, ja)− E

(n)
y (i, ja)

∆x
− E

(n)
x (i, ja + 1)− E

(n)
x (i, ja)

∆y

)

∆t.

Here we find that all terms are within the total field region except E
(n)
x (i, ja), which is outside in the

scattered field region. The Ey terms get outside also at i = ia and i = ib, but we have already taken care

of this above. Hence, to make the update correct, we need to add the incident field to E
(n)
x (i, ja):

H(n)
z (i, ja) = H(n−1)

z (i, ja)

−

E
(n)
y (i + 1, ja)− E

(n)
y (i, ja)

∆x
−

E
(n)
x (i, ja + 1)−

(

E
(n)
x (i, ja) + E

(n)
x inc(i, ja)

)

∆y

∆t

= H(n)
z no−inc(i, ja)−

E
(n)
x inc(i, ja)

∆y
∆t. (23)

Repeating the same procedure for j = jb,

H(n)
z (i, jb) = H(n−1)

z (i, jb)−
(

E
(n)
y (i + 1, jb)− E

(n)
y (i, jb)

∆x
− E

(n)
x (i, jb + 1)− E

(n)
x (i, jb)

∆y

)

∆t,

15

we find that this time we need to add E
(n)
x (i, jb + 1) to the incident field. Hence,

H(n)
z (i, jb) = H(n−1)

z (i, jb)

−

E
(n)
y (i + 1, jb)− E

(n)
y (i, jb)

∆x
−

(

E
(n)
x (i, jb + 1) + E

(n)
x inc(i, jb + 1)

)

− E
(n)
x (i, jb)

∆y

∆t

= H(n)
z no−inc(i, jb) +

E
(n)
x inc(i, jb + 1)

∆y
∆t. (24)

Let us summarize the results for the Hz field. Corrections to Hz have to be carried out on all four �
boundaries. On the i = ia boundary we add the correction, which is evaluated at (ia, j). On the i = ib
boundary we subtract the correction, which is evaluated at (ib + 1, j). Then at j = ja we subtract the
correction, which is evaluated at (i, ja), and at j = jb we add the correction, which is evaluated at (i, jb+1).
The corner points are handled correctly because here the updates are performed twice.

We note that the D corrections are evaluated by using the n− 1 H slice, whereas the H corrections
are evaluated by using the n E slice.

The signal injection routines can be tested easily by submitting runs without any media but with
various signals injected into the total field region from various directions.

2.5 Spectral Response

shapes will accumulate spectral response integrals, on request, for Ex, Ey, Hz and energy density, E =
(

E2
x + E2

y + H2
z

)

/2, for any number of frequencies. The accumulated Fourier integrals for field f(x, y, t) at
time step tn = n∆t, where ∆t is the level 0 (see Section 2.6) time step, are

f̂r(x, y, ω) =

n
∑

k=1

f(x, y, tk) cos(ωtk)∆t

f̂i(x, y, ω) =

n
∑

k=1

f(x, y, tk) sin(ωtk)∆t.

Currently, spectral response is not calculated at the time granularity of higher resolution levels, if syn-
chronized multistep is used (see Section 2.6.1). But ∆t is included in the above formulas so that we can
introduce higher resolution time granularity in the future.

The Fourier accumulation terms are then used to evaluate the amplitude and the phase angle:

∣

∣

∣
f̂(x, y, ω)

∣

∣

∣
=

√

f̂2
r (x, y, ω) + f̂2

i (x, y, ω)

Φ(x, y, ω) = arctan

(

f̂i(x, y, ω)

f̂r(x, y, ω)

)

.

The frequencies used in the input to and output from shapes are circular frequencies, ω = 2π/T , where
T is the vibration period.

Every accumulation term is stored on its own separate Chombo array. The arrays are allocated dy-
namically depending on the number of frequencies for which the spectral response is to be computed.

2.6 Multigrid

The multigrid is generated on request in specified locations, or in places where the energy density E changes
faster than a certain threshold value, or in places where the energy density exceeds a certain threshold

16

value, or in places where combinations of the above conditions occur. The user specifies a number of desired
multigrid levels. Level 0 corresponds to the coarsest grid; level 1 corresponds to a grid that is refined by 2
in both x and y directions:

∆x1 = ∆x0/2

∆y1 = ∆y0/2;

level 2 corresponds to a grid that is refined by 2 again:

∆x2 = ∆x1/2 = ∆x0/4

∆y2 = ∆y1/2 = ∆y0/4

and so on. Finer grids must be thoroughly enclosed within the coarser grids; in other words, the level 1 grid
must be enclosed within the level 0 grid, the level 2 grid must be enclosed within the level 1 grid, and so
on. Higher-level grids may consist of separate portions, that is, there may be a higher-resolution grid patch
here and a higher resolution grid patch there, separated by a lower-resolution grid region. All patches that
are characterized by the same refinement number comprise a single, though possibly disconnected, level.

The refinement process also shifts the zero of the refined grid with respect to the coarse grid, as shown
in Figure 3. In this figure the black dots correspond to the centers of the coarse-grid cells, and the white

Figure 3: Refinement process. The black dots correspond to the centers of the coarse-grid cells, and the
white dots correspond to the centers of the fine-grid cells.

dots correspond to the centers of the fine-grid cells. Each coarse-grid cell is subdivided into four fine-grid
cells. The (0, 0) grid point of the fine grid is shifted by (−∆xcoarse/4,−∆ycoarse/4) with respect to (x0, y0)
of the coarse grid.

17

Levels like the two shown in Figure 3 are called adjacent . For example, levels 2 and 3 are adjacent, but
levels 2 and 4 are not. Similarly, levels 2 and 1 are adjacent, but levels 2 and 0 are not.

Data is transferred between adjacent levels only . This transfer happens in three ways. First, when the
level is created, data from the coarser level is interpolated in space and for some fields also in time onto the
new finer level. Second, when the levels are advanced, data from the coarser level is interpolated in space
and sometimes in time onto the boundary of the finer level in order to create a boundary condition there.
Third, at certain time slices, when data on the finer-level grid is time-aligned with data on the coarser
grid, the finer-level data is averaged back onto the coarser-level grid.

Special care must be taken when interpolating and averaging face-centered data. The geometric re- �
lationship between coarser- and finer-level data is different for face-centered data and for cell-centered
data. Consequently, different utilities must be used to average and interpolate face-centered data and cell-
centered data. Chombo provides basic support for cell-centered data only. shapes uses additional utilities
developed by Dan Martin of Lawrence Berkeley National Laboratory for handling face-centered data.

2.6.1 Multigrid Time Step

A leap-frog time step in a multigrid system may be implemented in two ways. One way is to select a time
step that corresponds to the finest level and use it to advance all levels at the same pace. This way works
well. A natural question is, where is the saving? The saving is in not having to advance a large number of
fine-grid cells, even though we still have to advance all cells of all levels at the same very fine time step that
is chosen to satisfy the stability criterion of the finest grid. Sections 5.2 and 5.3 show that the saving is
considerable. We call this technique a synchronized unistep, which is a short for a synchronized multilevel

leapfrog uniform time-step.
The other way is to advance each level at its own time step, different from one level to the other, but

still maintaining synchronization at shared E time slices across all levels and at shared H time slices across
all levels. For our refinement ratio of 2 this is possible if the time step is refined by 3 between adjacent
levels, not by 2, that is,

∆t1 = ∆t0/3

∆t2 = ∆t1/3 = ∆t0/9.

Figure 4 illustrates why this is so. We have only two levels in this figure, but it can be extended by simply
relabeling the levels. Observe that the level 0 E coincides with the level 1 E and that the level 0 H

coincides with the level 1 H. We call this a synchronized multistep, which is a short for a synchronized

multilevel leapfrog multi-time-step.
shapes implements both ways and the user is free to choose one or the other.

level 0 E

t0

H

t0 + ∆t0
2

E

t0 + ∆t0

H

t0 + 3∆t0
2

level 1 E H E H E H E H E H

Figure 4: The two-level synchronized multistep leapfrog: ∆t1 = ∆t0/3.

Data is exchanged between adjacent levels in the following three ways.

18

First, data from a coarser-level grid is interpolated onto a finer-level grid when the finer-level grid is
created or moved. When the finer-level grid is moved, then whatever data can be copied from the previous
instance of the grid is copied, and where data is not available, it is interpolated from the coarser-level grid.
The interpolation takes place in space only for the E field, but in both space and time for the H field,
because the finer-level grid restructuring or generation is carried out on the E time slices only.

Second, data from a coarser-level grid is interpolated onto the boundary of a finer-level grid to create
the boundary condition for the finer-level grid time step. The interpolation takes place in both time and
space for both the E and H fields, with the exception of the time slices for which the finer- and the
coarser-level E and H fields coincide.

Third, data from a finer-level grid is averaged onto a coarser-level grid, as the coarser-level correction,
at the time slices for which the finer- and the coarser-level E and H fields coincide.

level 0 E H E H

level 1 E H E H E H E H E H

Figure 5: The two-level synchronized multistep leapfrog showing communication lines between the levels.
Communication on vertical lines is bidirectional, since these are sync lines and level 1 data can be used to
correct (by averaging) level 0 data. Communication on angled lines is from level 0 to level 1. Here level 0
data is used to provide data for the level 1 boundary.

Figure 5 shows interlevel communication for the synchronized multistep. For the level 1 points, where
two angled lines meet, time interpolation is implied between the level 0 points from which the lines originate.

Now, let us look at the synchronized multistep procedure more closely. Consider the two-level system
shown in Figures 4 and 5. Assume that we are at the following time slices.

E0 at t0

E0old at t0 −∆t0

H0 at t0 + ∆t0/2

H0old at t0 −∆t0/2

E1 at t1 = t0

H1 at t1 + ∆t1/2 = t0 + ∆t0/3/2

We can provide boundary data to E1(t0) because we have E0(t0), and we can provide boundary data to
H1(t0 + ∆t0/3/2) by time interpolating between H0(t0 −∆t0/2) and H0(t0 + ∆t0/2).

The two-level leapfrog now unfolds as follows:

• Advance E0 so that we get E0 at t0 + ∆t0 and E0old at t0.

– Advance E1 so that we get E1 at t0 + ∆t0/3. Time interpolate between E0old at t0 and E0 at
t0 + ∆t0 to provide boundary data for E1 at t0 + ∆t0/3.

– Advance H1 so that we get H1 at t0 + ∆t0/2. As we are now in sync with level 0 H-wise,
correct H0 at this time slice by averaging data from H1. Use H0 to provide boundary data to
H1 at t0 + ∆t0/2.

19

– Advance E1 so that we get E1 at t0 + 2∆t0/3. Time interpolate between E0old at t0 and E0 at
t0 + ∆t0 to provide boundary data for E1 at t0 + 2∆t0/3.

• Advance H0 so that we get H0 at t0 + 3∆t0/2 and H0old at t0 + ∆t0/2.

– Advance H1 so that we get H1 at t0 + ∆t0/2 + ∆t0/3. Time interpolate between H0old at
t0 + ∆t0/2 and H0 at t0 + 3∆t0/2 to provide boundary data for H1 at t0 + ∆t0/2 + ∆t0/3.

– Advance E1 so that we get E1 at t0 + ∆t0. As we are now in sync with level 0 E-wise, correct
E0 at this time slice by averaging data from E1. Use E0 to provide boundary data to E1 at
t0 + ∆t0.

– Advance H1 so that we get H1 at t0 + ∆t0 + ∆t1/2 = t0 + ∆t0 + ∆t0/3/2. Time interpolate
between H0old at t0 + ∆t0/2 and H0 at t0 + 3∆t0/2 to provide boundary data for H1 at
t0 + ∆t0 + ∆t0/3/2.

We are exactly where we started but with t0 → t0 + ∆t0.
Let us repeat this sequence below, with interpolation and time slice details stripped off for clarity:

• Update E0

– Update E1

– Update H1, correct H0

– Update E1

• Update H0

– Update H1

– Update E1, correct E0

– update H1

It is now easy to arrive at, for example, a three-level leapfrog time step by extending the above routine
recursively:

• Update E0

– Update E1

∗ Update E2

∗ Update H2, correct H1

∗ Update E2

– Update H1, correct H0

∗ Update H2

∗ Update E2, correct E1

∗ Update H2

– Update E1

∗ Update E2

∗ Update H2, correct H1

∗ Update E2

• Update H0

20

– Update H1

∗ Update H2

∗ Update E2, correct E1

∗ Update H2

– Update E1, correct E0

∗ Update E2

∗ Update H2, correct H1

∗ Update E2

– Update H1

∗ Update H2

∗ Update E2, correct E1

∗ Update H2

Clearly, to implement this time step, we need two types of routines that call each other recursively. Let
us call the first routine update_e_n. It will do the following.

• Update En

• Update Hn, correct Hn−1

• Update En

Let us call the second one update_h_n. It will do the following

• Update Hn

• Update En, correct En−1

• Update Hn

To implement the recursion, we then do the following

1. For update_e_n:

• Update En, call update_e_n(n+1)

• Update Hn, call update_h_n(n+1), correct Hn−1

• Update En, call update_e_n(n+1)

2. For update_h_n:

• Update Hn, call update_h_n(n+1)

• Update En, call update_e_n(n+1), correct En−1

• Update Hn, call update_h_n(n+1)

Of course we must implement various checks to ensure that, for example, a higher level exists before a
call is made to update_h_n or update_e_n. If the next level does not exist, the recursion stops. But we
need not check whether a lower level exists, because these two routines can be invoked only from within a
coarser-level advance.

shapes handles level 0 advance differently, first, because we have to attend to PML ABCs and total
and scattered field regions boundaries at this level, and, second, because there is no coarser level to be

21

corrected. Furthermore, there is no “1, 2, 3” dance step for level 0. Instead, level 0 time steps as usual and
drives the recursive “1, 2, 3” dance step of higher levels—if they exist.

This recursive multilevel leapfrog has three major advantages. First, all levels flow always forward,
without any back-stepping or look-ahead. Second, the evolution of all levels is always synchronized. Third,
each level needs to remember only one previous field state in order to provide data for the higher-level
boundary, as the finer levels always lag a little behind the coarser levels.

But the recursive multilevel multistep leapfrog procedure presented here does have some serious dis- �
advantages. The first disadvantage is that computers cannot divide by 3, because they are all binary
machines. Hence, a discrepancy is bound to accumulate over a large number of iterations between level 0
and level n times.

The second disadvantage is that because the time step shrinks faster than the space discretization,
level n advance is going to be increasingly costly as n goes up. For example, let ∆x0 = 1 and ∆t0 = 1/2.
Clearly, for a 10-level system the level 9 grid spacing and time step will be ∆x9 = ∆x0 × (1/2)9 =
.0019531250, but ∆t9 = ∆t0 × (1/3)9 = .0000254026. Hence, whereas ∆t0/∆x0 = 1/2, ∆t9/∆x9 =
∆t0 × (1/3)9/(∆x0 × (1/2)9) = (∆t0/∆x0) × (2/3)9 = (1/2) × 0.0260122948. This second disadvantage
compounds the first one because it results in a very large number of the 1/3 time steps on multiple levels.

The third disadvantage is the need to time-interpolate boundary conditions for level k from the coarser

level, k − 1, between t
(n)
k−1 and t

(n+1)
k−1 at t = t

(n)
k−1 + ∆tk−1/3 and t = t

(n)
k−1 + 2∆tk−1/3, where n is the time

step number at level k− 1. Apart from having to work with yet another division by 3, this is not going to
be as accurate as would be the case if the coarser level had been advanced by using the same small time
step as the finer level. This small inaccuracy is enough to introduce high-frequency noise into the solution
procedure. The noise then gets trapped within the higher levels because it cannot propagate within the
coarser levels, and once trapped, it grows and derails the solution.

The unistep procedure is much cleaner in this respect. There is markedly less noise generation here
on level boundaries and experimental tests demonstrated its stability for all configurations investigated so
far.

Some of the multigrid-induced problems can be controlled by deploying a judicious multigrid generation
strategy. Refined levels should be kept as small as possible. There is no point bothering about multigrid if
refined levels overlap with the original computational domain entirely or even largely. In this case, we are
better off solving the problem on a sufficiently fine single-level grid or on a smaller number of levels with
level 0 having a higher resolution.

2.6.2 Building Higher Levels

Before we can carry out a multilevel leapfrog time step on multilevel data, we have to build a multilevel
system of field data. This is done recursively, although since simple tail recursion is deployed in this case, it
could be done by using iterative code. The main idea here is that level n must be fully constructed before
we can build level (n + 1).

The process of building a new level is split into two steps:

1. We tag cells of level n for refinement based on one of three possible criteria: (1) the cell is located
in a static area designated for refinement, (2) energy density in the cell exceeds a certain threshold
level, and (3) the speed with which energy density in the cell changes exceeds a certain threshold
level. The user may choose one or combine them as needed.

If the resulting set of tagged cells is empty, we finish the building procedure and truncate the vector
of levels (there is such a construct in the code) so that level n is the highest level.

2. If the set of tagged cells for level n is not empty, we invoke the same procedure used to build level n,
but this time we ask it to build level (n + 1).

22

Once the level-building process is invoked within level 0, it keeps going either until it reaches a level for
which no cells get tagged for further refinement or until it reaches a maximum allowed number of levels.
Since building and advancing higher levels is increasingly expensive, a maximum number of levels is read
from the input file and applied to this part of the code. But this number can be anything the user wants,
limited only by available computational and storage resources.

Such recursive rebuilding (or, as Chombo calls it, regridding) of all levels is carried out at regular time
intervals that coincide with E time slices for level 0—unless the user has requested that cells be tagged
on the location criterion only. In this case the multigrid is going to be static. shapes detects this, and,
having built all levels, it forgoes invoking the regridding routines again.

Since regridding is carried out at E time slices, current E fields for multiple levels are simply generated
by space interpolation from coarser levels. On the other hand, H fields and _old fields must be both time
and space interpolated from coarser levels because the E time slices do not coincide with the H time slices
and with the _old field time slices for the fine level in general.

After data has been generated for a given level by interpolating data from a coarser level, we check
whether this level has existed before. If it has, then more accurate high-resolution data is available for this
level from the earlier time step. This data will not usually overlap with the current level entirely, but at
least some of its content can be overwritten with the more accurate old level data. This overwriting indeed
is done every time a new level is generated. To do otherwise would waste high-resolution data of refined
levels every time regridding is attempted.

Multigrid is a mixed blessing. On the one hand, it lets us focus on a selected small patch of the system
and solve Maxwell equations on this patch more accurately. On the other hand, multigrid may introduce
noise and instability into the FDTD method, which is finely tuned for solving Maxwell equations on
a regular rectangular grid, and we have not yet found a satisfactory way to deal with this problem in
case of the synchronized multistep. On the other hand, there is markedly less noise in the solution when
synchronized unistep is used, and we were able to carry out very long simulations using this method.

Multigrid computations can be costly, too. Moving data between levels is a communication-heavy
process, especially when the code runs on a cluster.

All in all, multigrid is an overkill for most 2D computations, with the notable exception of those that
attempt to simulate multiscale systems. We provide a suitable illustration of such a system in Section 5.
For example, consider a situation in which we have to condition incident radiation in some way, using a
larger device, and then irradiate a very small object with it. To simulate both the conditioning device
and the small object at the same time, we may have to resort to multigrid computations. In this specific
context multigrid may result in exponential savings, compared to what it would cost to solve the problem
on a uniform very high resolution grid.

We expect that in three dimensions there will be more need for multigrid because the problems are
going to be a lot larger and closer to real life-systems.

Just as important, it is not necessary to use multigrid features when working with shapes. shapes can
do all its work on a single level, and whatever utilities are provided in the code for multi-level operations
are not activated unless multigrid construction is explicitly requested by the user. Then the user has a
number of strategies available, for example, choice of the time-stepping routine and choices pertaining to
the fine-level grid geometry, to tune the multigrid solution method to the problem at hand.

2.7 Parallelization

shapes can run in parallel under MPI on whatever systems support MPI. These are most often clusters
of small SMPs: two-way or four-way. It is advantageous, then, to invoke two or four MPI processes per
node accordingly. shapes does not use OpenMP, hence, the only way to take advantage of the SMP
architecture of the node is to fork multiple MPI processes on it, which is an efficient method to harness

23

the SMP architecture anyway. In this case, however, special care must be taken to ensure that HDF5 has
been compiled for this architecture with multithreading enabled. Otherwise HDF5 MPI-IO output may
hang.

shapes will also run on a single SMP. In this case the user should request a number of MPI processes
matching the number of SMP CPUs allocated to the run.

Chombo parallelizes its operations by dividing all cells of a given level into rectangles and then dis-
tributing the rectangles of cells among the MPI processes. Thus, a Chombo rectangle of cells is a quantum

of parallelism. But a given MPI process may end up with more than one rectangle for a given level, and
then it may have to compute on rectangles covering other levels, too. Chombo attempts to distribute the
load evenly. This process, however, depends also on the specific shape of the subgrids. Intricate shapes
may require a large number of small rectangles to cover them.

The shapes user may specify the smallest size of a rectangle to be used in covering the subgrids, the
largest size of a rectangle, and how relaxed the covering is allowed to be. A very relaxed covering may
simply slap a single large rectangular patch on the designated area of the grid. A very tight covering may
end up tracing the shape of the area closely—generating many small rectangles in the process.

When shapes runs in parallel, all I/O is done in parallel, too. shapes diagnostics are written by
participating MPI processes on their own process-specific files. Field data is written on MPI-IO files by
using the HDF5 library. Each snapshot results in a single HDF5-structured MPI-IO file, which is accessed
by all MPI processes simultaneously. Such files are best created on a parallel file system, for example,
PVFS, GPFS, or Lustre.

Unfortunately, we do not at present have tools that can read and visualize these HDF5 files in parallel.
Right now we can only look at them with ChomboVis, which is a sluggish, sequential Python/VTK script.
But it still helps when the script can read data directly from the parallel file system onto which it was
dumped in the first place.

2.8 Output

shapes can output field data for Dx, Dy, Ex, Ey, Hz, E = (E2
x + E2

y + H2
z)/2, metal distribution, and

spectral response associated with Ex, Ey, Hz, and E . All field data that is written out is cell-centered and
time-centered on the level 0 E time slices. The user can specify which fields to dump and for which levels.

shapes can generate output in HDF5 or Gnuplot formats, and the user may choose one or the other
or both. The HDF5 format can always be used. The Gnuplot format can be used only in the sequential
version of the program; otherwise Gnuplot format directives are ignored.

Disabling both HDF5 and Gnuplot outputs disables all field data generation. The program will still
run, though, and it will print various diagnostics on standard output or on the MPI output files if run in
parallel and if such diagnostics have been requested. This mode of operation can be used for debugging.

HDF5 data files collate all fields selected for a given snapshot at all levels on a single structured file
called fields_<snapshot_number>.hdf5. The field data is written first in a special machine independent
IEEE approved format, not as text, and it is additionally compressed , so the files take much less space
than do Gnuplot text files. On the other hand, extracting data from the HDF5 files is a major effort. The
ChomboVis tool, mentioned above, must be used to postprocess and visualize data from the HDF5 files
dumped by shapes.

HDF5 files contain some additional information in the headers, but not as much as Gnuplot files. This
situation may change in future versions of shapes.

In the Gnuplot output mode the program generates separate files for each field at a given level. The Gnu-
plot data file names are <field_name>_<level_number>_<snapshot_number>.dat, where <field_name>

corresponds to the field being dumped, for example, Ex, in which case <field_name> is Ex. For spectral
response fields, the frequency enters the field name also, for example, Ex_amplitude_0.1570.

24

Gnuplot files generated by shapes are simple text files. They are human readable and their content
can be displayed by using the Gnuplot splot command, for example, the following.

set xrange[10:90]

set yrange[10:90]

splot "Ex_0_074.dat" with lines

The header of each Gnuplot file contains extensive annotations, for example, the following.

program: shapes, function: write_gnuplot_data

header:

program author: Zdzislaw (Gustav) Meglicki, Indiana University

@Id: shapes.cpp,v 1.21 2005/12/22 18:41:29 gustav Exp @

@Id: shapes.h,v 1.64 2005/12/17 23:41:59 gustav Exp @

@Id: levels.cpp,v 1.90 2005/12/23 23:07:46 gustav Exp @

@Id: io.cpp,v 1.20 2005/12/23 20:50:20 gustav Exp @

@Id: update.f,v 1.45 2005/12/24 01:06:58 gustav Exp @

system kernel: CYGWIN_NT-5.1.1.5.18(0.132/4/2).2005-07-02 20:30

machine: i686

node: woodlands

time of dump: Fri Dec 23 21:36:42 2005

Signal injection group:

x_lo: 20.000000

y_lo: 20.000000

x_hi: 80.000000

y_hi: 80.000000

mode: 7 (Gaussian envelope quadratic chirp)

t0: 300.000000

lambda: 10.000000

sigma: 60.000000

alpha: 0.000000

beta: 0.001200

vx: 0.000000

vy: 1.000000

Media group:

medium 1:

epsilon_infty: 2.364610

alpha: 0.000000 1.000000 1.000000

omega: 0.662850 0.332290 0.393180

delta: 0.004290 0.063930 0.105760

epsilon: 1.000000 0.315040 0.868050

medium 2:

epsilon_infty: 2.364610

alpha: 0.000000 0.000000 0.000000

omega: 0.662850 0.000000 0.000000

delta: 0.004290 0.000000 0.000000

25

epsilon: 1.000000 0.000000 0.000000

Media layout group:

boxes:

x_lo: 30.000000 55.000000

y_lo: 30.000000 30.000000

x_hi: 45.000000 70.000000

y_hi: 70.000000 70.000000

medium: 1.000000 2.000000

Data group:

data for: Hz

level: 0

label: 238

time_e: 476.000000

time_h: 476.062500

delta_t: 0.125000

delta_t_0: 0.125000

xmin: 0.000000

xmin_0: 0.000000

xmax: 99.500000

xmax_0: 99.500000

ymin: 0.000000

ymin_0: 0.000000

ymax: 99.500000

ymax_0: 99.500000

delta_x: 0.500000

delta_x_0: 0.500000

delta_y: 0.500000

delta_y_0: 0.500000

data minimum: -0.671084

global minimum: -1.843705

data maximum: 0.687022

global maximum: 1.904647

data:

x: y: Hz:

-0.500 -0.500 0.00000

0.000 -0.500 0.00000

0.500 -0.500 0.00000

...

Gnuplot data files can be converted to GIF animations in the following three steps.

1. For each data file from the series to be animated, for example, Hz_0_005.dat set Gnuplot terminal
to png, set Gnuplot output to Hz_0_005.png, define a title for the plot, and then splot the data
file. Gnuplot will write an image in the png format on Hz_0_005.png.

2. Convert each png image to the gd2 image with pngtogd2, and then convert it to a gif file with
gd2togif.

3. Assemble all the gif files into a movie by calling gifsicle, for example,

26

gifsicle --delay 20 --loopcount Hz_0_[0-9][0-9][0-9].gif > Hz_0_movie.gif

Three scripts are provided with the source in the scripts subdirectory: dattomovie.sh, write_gif_files.sh,
and pngtomovie.sh. These scripts show how to automate the conversion process.

3 How to Use shapes

shapes

and auxiliary utilities are installed on the ANL Jazz cluster in the

/soft/apps/packages/photonic-packages/bin

directory. shapes users should therefore add this directory to their command search path on Jazz. It
should not be necessary to do anything else to use shapes. The program is now invoked through scripts
that configure the user environment automatically.

In order to add photonic-packages to their command search PATH on the Jazz cluster, users can edit
the .soft file in their $HOME directory and insert the photonic-packages binary directory in front of their
@default line. It is also a good idea to define the WWW_BROWSER at the same time, because the browser is
needed to read ChomboVis documentation. More details are given in Section 4.3, page 72. In effect, the
.soft file may look as follows:

(jlogin2) $ cat .soft

PATH += /soft/apps/packages/photonic-packages/bin

WWW_BROWSER = /soft/apps/packages/photonic-packages/bin/firefox

@default

(jlogin2) $

shapes also has been installed on the University of Chicago TeraGrid node, and plans are under way
to install the package on the Pittsburgh Supercomputer Center’s Cray XT3 system, called Bigben. These
two systems are well worth using.

The University of Chicago cluster has 62 two-way IA-64/Madison SMP nodes and 8 TB GPFS. It also
has access to some 200 TB wide area network GPFS. The cluster is lightly used at present, and one can
easily get time on it.

The PSC Bigben is a 2068 CPU MPP with a very fast low-latency custom interconnect and Opteron
nodes. This machine has 24 TB of Lustre file system and 2 TB memory. This system is used quite heavily,
not so much by a large number of users, but for very large jobs.

3.1 A Simple Jazz Example

The simplest way to use shapes on the Jazz cluster is as follows. (Users must have already included the
photonic-packages binary directory in their command search path. Also, see the note about managing the
environment with the .soft file above.) The first step is to type

27

(jlogin1) $ interactive

qsub: waiting for job 533050.jmayor5.lcrc.anl.gov to start

qsub: job 533050.jmayor5.lcrc.anl.gov ready

(j91) $

interactive is a simple shell script in the photonic packages directory that gives the user an interactive
session on a PBS-allocated node. All shapes runs should be always carried out under PBS and never on
the front-end nodes. The user may have to wait a little after having issued this command, but eventually
a node will be allocated. In this example we got node j91 and an interactive shell forked on it.

The next step for the user is to go to a data directory on the parallel file system, PVFS. Every user
can create a directory there from every node on the Jazz cluster. In this example, we have already created
such a directory:

(j91) $ cd /pvfs/scratch/meglicki

(j91) $ mkdir test-run

(j91) $ cd test-run

(j91) $

We now copy an example input file from the shapes source directory to the PVFS data directory:

(j91) $ cp /soft/apps/packages/photonic-packages/src/Shapes-2.1/src/shapes.input .

(j91) $ ls

shapes.input

(j91) $

The shapes input file is discussed in detail in shapes(5), which can be read, as can this document, from
our nanophotonics Wiki.

At this stage we are ready to run shapes. To make sure we have the right binary in the command
search path, we check it by typing

(j91) $ which shapes

/soft/apps/packages/photonic-packages/bin/shapes

(j91) $

Finally, we type the following.

(j91) $ shapes shapes.input

@Id: shapes.cpp,v 2.1 2006/01/20 19:11:34 meglicki Exp @

@Id: shapes.h,v 2.0 2006/01/11 15:24:10 gustav Exp @

@Id: io.cpp,v 2.0 2006/01/11 15:18:01 gustav Exp @

@Id: levels.cpp,v 2.0 2006/01/11 15:18:35 gustav Exp @

@Id: update.f,v 2.0 2006/01/11 15:22:21 gustav Exp @

28

Program developed by Zdzislaw (Gustav) Meglicki, Indiana University

print_level: my_level = 0

levels[0]->domain = Box (0,0) to (199,199) type [(0,0)]

levels[0]->x0 = 0, levels[0]->y0 = 0

levels[0]->delta_x = 0.5, levels[0]->delta_y = 0.5

levels[0]->imin = 0, levels[0]->imax = 199

levels[0]->jmin = 0, levels[0]->jmax = 199

levels[0]->xmin = 0, levels[0]->xmax = 99.5

levels[0]->ymin = 0, levels[0]->ymax = 99.5

levels[0]->time_e = 0, levels[0]->time_e_old = -0.125

levels[0]->time_h = 0.0625, levels[0]->time_h_old = -0.0625

levels[0]->delta_t = 0.125

...............

analyze_levels, level = 0, time_e = 2, time_h = 2.0625

Dx_min = -4.52283e-07, -4.52283e-07

Dx_max = 1.01719e-07, 1.01719e-07

Dy_min = -2.28481e-07, -2.28481e-07

Dy_max = 2.28481e-07, 2.28481e-07

Ex_min = -4.52283e-07, -4.52283e-07

Ex_max = 1.01719e-07, 1.01719e-07

Ey_min = -2.28481e-07, -2.28481e-07

Ey_max = 2.28481e-07, 2.28481e-07

Hz_min = -2.26044e-07, -2.26044e-07

Hz_max = 6.60138e-07, 6.60138e-07

Energy_min = 0, 0

Energy_max = 3.06609e-13, 3.06609e-13

................

The output in this case is verbose. The program introduces itself by printing versions of every source
file used in its compilation. This is important: if something changes, the user will be able to see that there
is a new version, for example, information of update.f in the printout. Then the program builds its first,
and in this case the last, level, level 0, and tells the user about it. Finally it commences the iterations. A
dot is printed for every level 0 time step. Prior to the data dump, the data is analyzed, and minima and
maxima of various fields are printed. This procedure is repeated until the program finishes the execution.

All this output can be switched off and the program made to run silently. But it is good to keep an
eye on what the program does and especially on the field minima and maxima. The numbers should not
diverge too far from 1. This is the advantage of doing all the computations in natural units.

When shapes is done, we get the following message.

main: done.

io.cpp:153: 47

io.cpp:142: 53

io.cpp:134: 80

levels.cpp:424: 55

io.cpp:127: 51

29

io.cpp:117: 53

es.cpp:127: 55

Total Unfreed from new,malloc, etc: 394 bytes

Vector 3Box: 28 bytes (0 Mb)

Vector 5Entry: 36 bytes (0 Mb)

Vector P7FluxBox: 48 bytes (0 Mb)

Vector P9FArrayBox: 140 bytes (0 Mb)

Vector P9LevelDataI7FluxBoxE: 24 bytes (0 Mb)

Vector d: 192 bytes (0 Mb)

Vector i: 4 bytes (0 Mb)

Vector j: 4 bytes (0 Mb)

BaseFab d: 11622012 bytes (11 Mb)

IntVectSet allocation 136 bytes (0 Mb)

Total Unfreed : 11623018 bytes (11 Mb)

peak memory usage: 11628974 bytes (11 Mb)

(j91) $

The program used only 11 MB memory, which is very little for an application of this type.
A listing of the working directory shows us that 300 data files were dumped in it.

(j91) $ ls

Hz_0_001.dat Hz_0_062.dat Hz_0_123.dat Hz_0_184.dat Hz_0_245.dat

Hz_0_002.dat Hz_0_063.dat Hz_0_124.dat Hz_0_185.dat Hz_0_246.dat

...

Hz_0_055.dat Hz_0_116.dat Hz_0_177.dat Hz_0_238.dat Hz_0_299.dat

Hz_0_056.dat Hz_0_117.dat Hz_0_178.dat Hz_0_239.dat Hz_0_300.dat

Hz_0_057.dat Hz_0_118.dat Hz_0_179.dat Hz_0_240.dat shapes.input

Hz_0_058.dat Hz_0_119.dat Hz_0_180.dat Hz_0_241.dat

Hz_0_059.dat Hz_0_120.dat Hz_0_181.dat Hz_0_242.dat

Hz_0_060.dat Hz_0_121.dat Hz_0_182.dat Hz_0_243.dat

Hz_0_061.dat Hz_0_122.dat Hz_0_183.dat Hz_0_244.dat

(j91) $

These are the Gnuplot format data files. Each has a detailed header that tells us about the program that
dumped the file, its version, time of dump, what’s been dumped, and various run-related parameters. See
Section 2.8 and the example provided.

At this stage, we can return to a Jazz front-end node:

(j91) $ exit

logout

qsub: job 533050.jmayor5.lcrc.anl.gov completed

(jlogin1) $

If the connection was made from an X11 workstation using secure shell, then a DISPLAY variable should
be created on the Jazz front-end node:

30

(jlogin1) $ echo $DISPLAY

localhost:23.0

(jlogin1) $

If everything works as it should, then issuing the command xclock should bring a clock with Chicago time
on the user’s X11 display. If the clock does not come up, something is wrong. Assuming X11 works as it
should, we change to the data directory and then call Gnuplot.

(jlogin1) $ xclock

^C

(jlogin1) $ cd /pvfs/scratch/meglicki/test-run

(jlogin1) $ gnuplot

G N U P L O T

Version 3.7 patchlevel 3

last modified Thu Dec 12 13:00:00 GMT 2002

System: Linux 2.4.29-rc2

Copyright(C) 1986 - 1993, 1998 - 2002

Thomas Williams, Colin Kelley and many others

Type ‘help‘ to access the on-line reference manual

The gnuplot FAQ is available from

http://www.gnuplot.info/gnuplot-faq.html

Send comments and requests for help to <info-gnuplot@dartmouth.edu>

Send bugs, suggestions and mods to <bug-gnuplot@dartmouth.edu>

Terminal type set to ’x11’

gnuplot>

After defining x and y ranges for the plot, we are ready to view the data itself.

gnuplot> set xrange[20:80]

gnuplot> set yrange[20:80]

gnuplot> splot "Hz_0_170.dat" with lines

gnuplot>

This should bring a figure similar to that shown in Figure 6. The figure can be rotated by pressing the left
mouse button and dragging it left and right. It can be also zoomed in and out by pressing the right mouse
button and dragging the mouse.

To get an encapsulated PostScript copy of the figure for inclusion in a TeX document we do the
following.

31

"Hz_0_170.dat"

 20
 30

 40
 50

 60
 70

 80 20
 30

 40
 50

 60
 70

 80

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

Figure 6: Data snapshot produced by shapes.

gnuplot> set terminal postscript eps

Terminal type set to ’postscript’

Options are ’eps noenhanced monochrome dashed defaultplex "Helvetica" 14’

gnuplot> set output "Hz_0_170.eps"

gnuplot> replot

gnuplot> exit

(jlogin1) $

To convert the images into a GIF animation, we request again a PBS node.

(jlogin1) $ interactive

qsub: waiting for job 533065.jmayor5.lcrc.anl.gov to start

qsub: job 533065.jmayor5.lcrc.anl.gov ready

(j91) $

32

We then switch to the data directory

(j91) $ cd /pvfs/scratch/meglicki/test-run/

(j91) $

and run a script write_gif_files.sh in it:

(j91) $ write_gif_files.sh Hz 0 > Hz_0.plt

The script takes two arguments: the field name, Hz in this case, and the level number. Here we have only
one level, 0.

The script reads the headers of Hz_0_???.dat data files first and extracts xmin, xmax, ymin, ymax, zmin

and zmax, where in this case z = Hz, for the whole dumped data set (more precisely, here for all files
with names Hz_0_???.dat) so that Gnuplot can scale the animation correctly. Then the script generates
a Gnuplot command file on standard output. We capture it on Hz_0.plt.

The next step is to run Gnuplot on this file:

(j91) $ gnuplot Hz_0.plt

(j91) $

But this still won’t generate the GIF files. It used to, hence the name of the script (historic), but GIF
support has since been removed from Gnuplot. Today the script generates PNG files instead.

To convert the PNG files produced by running Gnuplot on Hz_0.plt to GIF and to collate them into
a movie we run a pngtomovie.sh script in the data directory. No additional command line arguments are
needed here.

(j91) $ pngtomovie.sh

Hz_0_001.png to ... Hz_0_001.gd2

Hz_0_002.png to ... Hz_0_002.gd2

...

Hz_0_299.png to ... Hz_0_299.gd2

Hz_0_300.png to ... Hz_0_300.gd2

Hz_0_001.gd2 to ... Hz_0_001.gif

Hz_0_002.gd2 to ... Hz_0_002.gif

...

Hz_0_300.gd2 to ... Hz_0_300.gif

-rw-r--r-- 1 meglicki collab 1469648 Jan 12 2006 Hz_0_movie.gif

(j91) $

And now we exit the shell on the j91 and come back to jlogin1.

33

(j91) $ exit

logout

qsub: job 533065.jmayor5.lcrc.anl.gov completed

(jlogin1) $

Users should not hang idly onto the PBS-allocated nodes because their use of the nodes is measured
(against their allowance) according to the wall clock, not according to the CPU time.

If the user has a high bandwidth connection to the Jazz cluster, the animation can be viewed directly
from the Jazz front end nodes as follows:

(jlogin1) $ gifview --animate Hz_0_movie.gif

But it is perilous to try it over ISDN or a telephone connection.

3.2 A Simple TeraGrid Example

TeraGrid accounts come in two varieties: the so-called roaming accounts and machine-specific accounts.
Both are acquired by connecting to

http://www.teragrid.org

. . . navigating toward “New Allocations” at the bottom of the page and eventually requesting a “Devel-
opment Allocation” (DAC) account.

TeraGrid managers are liberal when it comes to issuing DAC accounts. One simply must present a
brief research proposal to the TeraGrid DAC Committee to get a roaming allocation.

The machine-specific accounts are harder to get. One uses the same TeraGrid WWW machinery, but
this time the proposal must specifically focus on the target machine. Special resources are in this catetory.
The PSC Cray XT3, the SDSC IBM SP (called “DataStar”), and the NCSA SGI Altix (called “Cobalt”)
are not accessible to the TeraGrid roaming accounts.

The University of Chicago has a 64-node Itanium 2 cluster on the TeraGrid that is normally used by
two to six principals only. Hence, a high percentage of queued jobs gets to run as soon as they’re submitted.
For example, right now 90% of the requested service units is in execution. For comparison, this percentage
on the NCSA Tungsten cluster right now is 25%, and on the SDSC TeraGrid cluster it is 15%.

To run shapes on the University of Chicago’s TeraGrid cluster, one does the following after having
connected to the cluster’s front-end node:

(tg-login2) $ interactive

qsub: waiting for job 236705.tg-master.uc.teragrid.org to start

qsub: job 236705.tg-master.uc.teragrid.org ready

--

Begin PBS Prologue Fri Jan 13 14:41:22 CST 2006

Job ID: 236705.tg-master.uc.teragrid.org

Username: gustav

34

Group: allocate

Nodes: tg-c040

End PBS Prologue Fri Jan 13 14:41:26 CST 2006

--

(tg-c040) $

The allocated node is called tg-c040. The “c” in its name indicates that the node is IA64 and that it
belongs to the computational pool. There are also IA32 nodes on the same cluster, meant to be used for
visualization, and these are called something like tg-v080, with the “v”. One has to be careful to select
the IA64 nodes for all shapes runs. This is done by issuing a special instruction to PBS about which more
later. The command-script interactive selects IA64 nodes automatically.

Once we have connected to the node, the next step is to go to the data directory. On the Uni-
versity of Chicago cluster, the parallel file system is GPFS and the directory where it is mounted is
/disks/scratchgpfs1. There we create the subdirectory test-run and cd into it:

(tg-c040) $ pwd

/home/gustav

(tg-c040) $ cd /disks/scratchgpfs1/gustav

(tg-c040) $ mkdir test-run

(tg-c040) $ cd test-run

(tg-c040) $

Next we copy the shapes input file from the source:

(tg-c040) $ cp ~/src/Mine/Current/Shapes-Jan12-1819/src/shapes.input .

(tg-c040) $

We are almost ready to run. The script that sets the environment and invokes the actual shapes binary
is located at

(tg-c040) $ which shapes

/home/gustav/bin/shapes

(tg-c040) $

To run it, we type the following.

(tg-c040) $ shapes shapes.input

@Id: shapes.cpp,v 2.1 2006/01/20 19:11:34 meglicki Exp @

@Id: shapes.h,v 2.0 2006/01/11 15:24:10 gustav Exp @

@Id: io.cpp,v 2.0 2006/01/11 15:18:01 gustav Exp @

@Id: levels.cpp,v 2.0 2006/01/11 15:18:35 gustav Exp @

@Id: update.f,v 2.0 2006/01/11 15:22:21 gustav Exp @

Program developed by Zdzislaw (Gustav) Meglicki, Indiana University

35

print_level: my_level = 0

levels[0]->domain = Box (0,0) to (199,199) type [(0,0)]

levels[0]->x0 = 0, levels[0]->y0 = 0

levels[0]->delta_x = 0.5, levels[0]->delta_y = 0.5

levels[0]->imin = 0, levels[0]->imax = 199

levels[0]->jmin = 0, levels[0]->jmax = 199

levels[0]->xmin = 0, levels[0]->xmax = 99.5

levels[0]->ymin = 0, levels[0]->ymax = 99.5

levels[0]->time_e = 0, levels[0]->time_e_old = -0.125

levels[0]->time_h = 0.0625, levels[0]->time_h_old = -0.0625

levels[0]->delta_t = 0.125

...............

analyze_levels, level = 0, time_e = 2, time_h = 2.0625

Dx_min = -4.52283e-07, -4.52283e-07

Dx_max = 1.01719e-07, 1.01719e-07

Dy_min = -2.28481e-07, -2.28481e-07

Dy_max = 2.28481e-07, 2.28481e-07

Ex_min = -4.52283e-07, -4.52283e-07

Ex_max = 1.01719e-07, 1.01719e-07

Ey_min = -2.28481e-07, -2.28481e-07

Ey_max = 2.28481e-07, 2.28481e-07

Hz_min = -2.26044e-07, -2.26044e-07

Hz_max = 6.60138e-07, 6.60138e-07

Energy_min = 0, 0

Energy_max = 3.06609e-13, 3.06609e-13

......

Now everything works the same as on the Jazz cluster, except that fewer diagnostics are written when the
program finishes.

................

analyze_levels, level = 0, time_e = 600, time_h = 600.062

Dx_min = -1.51225, -6.80168

Dx_max = 1.39867, 4.38859

Dy_min = -1.30416, -5.56181

Dy_max = 1.56239, 6.35418

Ex_min = -0.750809, -2.85311

Ex_max = 0.654999, 3.77963

Ey_min = -0.871663, -2.98755

Ey_max = 0.749242, 3.32821

Hz_min = -0.208945, -1.8437

Hz_max = 0.254674, 1.90465

Energy_min = 0, 0

Energy_max = 0.171262, 7.83189

.

main: done.

36

(tg-c040) $

Even though the University of Chicago cluster is an IA64 system and Jazz is an IA32 system, the University
of Chicago cluster nodes are a little slower than Jazz nodes. But the University of Chicago cluster I/O is
faster, so in effect the wall-clock execution time of shapes on the University of Chicago system is just a
little less than the wall-clock execution time of shapes on Jazz. The example job discussed here took 5
minutes and 18 seconds on the Jazz cluster to complete and 4 minutes and 55 seconds on the University
of Chicago cluster.

The next step is to build an animation. This is done the same way as on the Jazz cluster. Still on the
PBS-allocated node, we do the following:

(tg-c040) $ write_gif_files.sh Hz 0 > Hz_0.plt

(tg-c040) $ gnuplot Hz_0.plt

(tg-c040) $ pngtomovie.sh

Hz_0_001.png to ... Hz_0_001.gd2

Hz_0_002.png to ... Hz_0_002.gd2

...

Hz_0_299.png to ... Hz_0_299.gd2

Hz_0_300.png to ... Hz_0_300.gd2

Hz_0_001.gd2 to ... Hz_0_001.gif

Hz_0_002.gd2 to ... Hz_0_002.gif

...

Hz_0_299.gd2 to ... Hz_0_299.gif

Hz_0_300.gd2 to ... Hz_0_300.gif

-rw-r--r-- 1 gustav allocate 1427917 2006-01-13 15:13 Hz_0_movie.gif

(tg-c040) $

and we’re done.
Small file GPFS I/O on the University of Chicago cluster is exceptional. GPFS caches everything in

memory, very aggressively. Because the data files produced by shapes in this example are quite small (less
than 1.2 MB) and the image files are tiny (4.5 to 7.6 kB), almost all I/O operations are carried out against
the memory buffers.

The last step to remember is to exit the shell on the PBS-allocated node.

(tg-c040) $ exit

logout

qsub: job 236705.tg-master.uc.teragrid.org completed

(tg-login2) $

To view the animation directly from the University of Chicago system one can invoke gifview. But a high
bandwidth connection is needed for this to work:

(tg-login2) $ cd /disks/scratchgpfs1/gustav/test-run/

(tg-login2) $ gifview --animate Hz_0_movie.gif

(tg-login2) $

37

3.3 The shapes Input File

shapes activities are steered through the input file the name of which is passed to the program on the
command line. The stand-alone Unix man-page shapes(5) describes the format of the file, what should go
where, and what is the meaning of various entries. Here we basically repeat this document for completeness,
but with fewer details and with more examples.

The input file to shapes is a simple text file with various keywords, one per line, and their values
separated by an equal sign. Lines that begin with the hash character are comments and are neglected by
shapes.

The keywords may appear in any order, but it is a good practice to organize them in logical groups.
And so the following groups are used by the current version of shapes:

chat, watch, level0, iterate, pml, signal, metal, tag, refine, spectral, output

The values on the right-hand side may be integer or real numbers or arrays of integers or real numbers.
Real numbers may be entered as integers, but integers must not be entered as reals. Arrays are entered as
list of integers or reals with entries separated by spaces.

3.3.1 The chat and watch Groups

The chat and watch groups specify the verbosity with which shapes chats about its activities. It is possible,
however, to make shapes work silently without switching off possible error messages.

There are eight keywords in the chat group at present.

chat.print versions (int) When this parameter is set to 1, the program prints RCS versions of all com-
ponent source files as well as the name and institution of the author of the program. Setting it to 0
disables this output.

chat.chombo verbose (int) When this parameter is set to 1 or 2, it activates chatting of C++ functions.
When set to anything higher than 2, it may trigger Fortran messages too (see below). Setting it to
0 disables the chat.

chat.fortran verbose (int)When se to 1 or higher this parameter activates chatting of Fortran subroutines
or disables the chat when set to 0. When the program runs in parallel, setting this to 1 may trigger
an enormous amount of output.

chat.print level 0 domain (int) Once the level 0 has been constructed, shapes prints its geometry and
other level 0-related parameters when this parameter is set to 1 or higher. Setting it to 0 disables
this output.

chat.print levels (int) When this parameter is set to 1, shapes prints information about every level that
has been constructed. Setting this parameter to 1 sets chat.print level 0 domain to 1, too.

chat.print min max (int) When this parameter is set to 1 or higher, shapes prints minimum and
maximum values of all fields for all levels for the time slice at which data is dumped. Historical
minimum and maximum values for the fields are printed, too. Setting this parameter to 0 disables
this output. This is good for keeping an eye on the program in case the solution may diverge.

chat.print actions (int) Setting this parameter to 1 makes shapes functions (the Chombo shell ones)
print all they do. This can be useful in deciphering recursion, checking synchronization between levels
and making sure that data flows between the levels at appropriate times and in the correct direction.
This parameter is much the same in practice as chat.chombo verbose.

38

chat.print dots (int) When this parameter is set to 1 or higher, shapes prints a dot for every iteration.
It may be useful to set it for interactive sequential runs, so that the user knows that something
happens and how much work has been done so far. Whenever other diagnostic output is enabled, it
is best to switch off this parameter.

As an example, let us look at the chat group in the input file used to run the job on the Jazz and
University of Chicago clusters.

chat.chombo_verbose = 0

chat.fortran_verbose = 0

chat.print_levels = 1

chat.print_versions = 1

chat.print_min_max = 1

chat.print_actions = 0

chat.print_dots = 1

Here we have asked shapes to print a message whenever it builds a level, to tell us about the RCS versions
of the source files used in the compilation of the program, to print field minima and maxima as the
computation unfolds, and to print dots for every level 0 iteration.

The keywords of the chat group do not discriminate. They make either all functions talk or none.
Often we may wish to trace only one or a couple of specific functions, but not all. We can do so by using
the watch group keywords. These are made of the string “watch” followed by a dot and the name of the
function. For example, to make function advance_e talk, we need only to set

watch.advance_e = 1

The watch keywords take integers as arguments: 0 makes the functions run silently; 1, 2 and more make
the functions talk. The higher the number, the more they talk. Setting the value of a watch parameter to
3 or higher will activate chatting by Fortran subroutines invoked from the watched functions.

Here is a list of all watch parameters that can be used in the shapes input file:

watch.advance e watch.advance h watch.analyze levels

watch.build basic fields watch.build cell centered fields watch.build distributions

watch.build disjoint box layout watch.build fourier fields watch.build level

watch.build media fields watch.build minmax watch.convert d to e

watch.copy basic fields watch.copy fourier fields watch.copy media fields

watch.dump data watch.effective domain size watch.evaluate energy

watch.exchange basic fields watch.exchange fourier fields watch.exchange media fields

watch.full copy watch.initialize level data watch.inject d

watch.inject h watch.interpolate basic fields watch.interpolate fourier fields

watch.interpolate media fields watch.main watch.patch basic fields

watch.patch fourier fields watch.patch media fields watch.push d

watch.push h watch.regrid watch.tag cells

watch.time interpolate watch.write box layout data watch.write gnuplot data

watch.write tags data

For example, to watch functions push d and push h, and to make fortran subroutines called from these
functions talk, we set the following.

39

watch.push_d = 3

watch.push_h = 3

3.3.2 The level0 Group

The level0 group is used to specify the general geometry of the computational domain. The computational
domain is always rectangular. We have to specify its length and width, as well as the number of grid
divisions in each direction. Additionally we have to specify how the computational domain is going to be
distributed among MPI processes if the program is going to run in parallel.

The geometry of the computational domain is specified in arbitrary units of length, δl. For example,
suppose we are going to inject a plane harmonic wave of length 5000 Å into the computational domain,
which is going to be a square. We would like to resolve the wave on, say, 40 grid segments, and we would
like to fit up to four full wavelengths into the total field region.

We can do so as follows. Let us make the computational region 100 × 100 units, and let us make the
level 0 grid divisions in both directions ∆x0 = ∆y0 = 0.5. The unit of length is therefore going to be such
that

2∆x0 = 2∆y0 = 1 δl

(which is why it is called a unit).
shapes does not assume that ∆x0 = ∆y0, but, frankly, it has never been tested for ∆x0 6= ∆y0; there �

is no computational advantage in making ∆x0 and ∆y0 different.
This choice of ∆x0 and ∆y0 results in a 200 × 200 grid. Now we want to resolve our 5000 Å wave on

40 grid segments, which means that each ∆x0 = ∆y0 = 0.5 = 5000 Å/40 = 125 Å. The unit of length is
therefore going to be

1 δl = 2×∆x0 = 250 Å,

and the wavelength itself is
40×∆x0 = 40× 0.5 δl = 20 δl.

In order to fit four full wavelength in the total field region in each direction, the region must have the
length and width of 20 δl×4 = 80 δl units. If we were to place the region centrally within the computational
domain of 100 δl × 100 δl, its corners would be (10 δl, 10 δl) and (90 δl, 90 δl).

Observe that this number �
1 δl = 250 Å

does not enter into the computations explicitly at any stage. The reason is that Maxwell electrodynamics
is a conformal theory, even in the presence of media. Solutions obtained for any specific geometry and
medium can be always reinterpreted, or scaled, to become solutions for something else, of similar shape
and proportions but different size and different material properties, properties that are ultimately also
described in terms of our unit of length.

shapes can perform its computations on a multigrid. Here we define only the so called level 0 grid,
that is, the coarsest grid. Higher-level grids (i.e., finer grids) are built by the program automatically. The
user can specify where finer gridding should be used, if at all, by using keywords of the tag group. It is not

necessary to use the multigrid, though.
We have eight keywords in the level0 group with which we can convey to shapes all the information

we have discussed above.

level0.nx (int) Number of level 0 cells in the x direction (minus 1).

level0.ny (int) Number of level 0 cells in the y direction (minus 1).

40

level0.nbx (int) Number of boxes in the x direction. shapes will group the level 0 grid cells into boxes
and will distribute them among MPI processes if executed in parallel. shapes will try to make the
boxes square, so the number of boxes in the x direction defines the average size of a box both in the
x and in the y directions. If shapes is run sequentially, then it is best to set this number to 1. But
it is OK to set it to something higher, say, 2 or 4. In this case shapes will group all level 0 grid cells
into separate boxes and will go through all the motions of moving ghost data between the boxes,
as if it was running on multiple CPUs. But all these operations will take place within memory of a
single sequential process. This feature can be used, for example, in test runs before submitting a job
to a multicomputer.

level0.x0 (Real) Value of the x coordinate (in δl) of the (0, 0) point of the level 0 grid (i.e., x0).

level0.y0 (Real) Value of the y coordinate (in δl) of the (0, 0) point of the level 0 grid (i.e., y0).

level0.delta x (Real) Level 0 grid constant in the x direction (i.e., ∆x0, in δl).

level0.delta y (Real) Level 0 grid constant in the y direction (i.e., ∆y0, in δl).

level0.time (Real) Value of initial time, t0 (in δt = δl because c = 1) that corresponds to the E field
within the level 0 grid. The H field is defined on a time slice that is ∆t0/2 (∆t0, the leapfrog time
step for level 0 is defined in the iteration group) ahead of the E time slice.

Let us have a look at the settings in the shapes.input file used above.

#

Level 0 geometry group

#

level0.nx = 200

level0.ny = 200

level0.nbx = 1

level0.x0 = 0

level0.y0 = 0

level0.delta_x = 0.5

level0.delta_y = 0.5

level0.time = 0

So we have that x0 = 0 δl, y0 = 0 δl, and t0 = 0 δt. We also find that ∆x0 = 0.5 δl and ∆y0 = 0.5 δl. The
grid extends from (x0, y0) = (0 δl, 0 δl) to (x0 + nx∆x0, y0 + ny∆y0) = (100 δl, 100 δl) and is grouped into
just one box. Let us observe that the actual number of cells in each direction is (201, 201), because the
zero point adds one more cell in each direction.

This is the basic cell-centered grid. shapes carries out its computations on a staggered grid. Only the
Hz field is attached to cell centers. The electric fields are attached to cell sides. Consequently, the electric
field grids are going to be larger by one either in the x or in the y direction, depending on whether it’s an
Ex grid or an Ey grid. shapes builds separate, precisely sized, staggered grids for the fields it operates on.

3.3.3 The iterate Group

The iterate group tells shapes how the level 0 should be iterated, that is, what the iteration time step
should be, how many iterations should be performed altogether, and how often field images should be
dumped.

41

shapes performs its computations in the natural units in which the speed of light in vacuum, c, is 1.
This means that in one unit of time, δt, the wave front is going to propagate by one unit of length, δl, in
vacuum. If we were to reuse the example discussed in the previous section, where we decreed the unit of
length to be 250 Å, we would end up with the unit of time of

δt =
δl

c
=

250 Å

c
=

250× 10−10 m

2.997925 × 108 m/s
= 8.3391 × 10−17 s. (25)

We will need this number to convert resonance frequencies for the media, given in hertz (1Hz = 1 s−1 to
our units, 1/δt, but it is not needed to define iteration parameters of this section.

Instead, the iteration time step ∆t0 is specified by telling shapes in how many time steps the wave
front is going to traverse a single grid cell in the x direction, namely, how many iterations are needed to
push the wavefront through a distance of ∆x0. This number is called a level 0 stride. And so, if we set,
say, a level 0 stride to 4, the time step ∆t0 will be chosen so that ∆x0 (in the example discussed above,
this was 125 Å) will be traversed in four level 0 iterations. In other words ∆t0 = ∆x0/4. In traditional
units this would be

∆t0 =
∆x0

4c
=

0.5 δl

4c
=

δl

8c
=

δt

8
=

8.3391 × 10−17 s

8
= 1.04 × 10−17 s.

It is not always the best idea to make the time step as long as the stability criterion for vacuum
electrodynamics lets it be, namely, ∆t0 = ∆x0/

√
n, where n is the number of dimensions. The reason is

that this number does not take into account stability conditions for the auxiliary differential equations, or,
for this matter, for the PMLs. In the presence of a multigrid, this number may have to be shortened too,
because the vacuum electrodynamics CFL criterion brakes on the multigrid boundaries.

There are four keywords in this group:

iterate.level0.stride (Real) This is the level 0 stride discussed above.

iterate.level0.image frequency (int) This parameter tells shapes how often to dump images. shapes will
dump images every iterate.level0.stride times iterate.level0.image frequency time steps. For example,
if iterate.level0.stride is 4 and iterate.level0.image frequency is 2, the image will be dumped every
4 × 2 = 8 time steps. Because in four time steps the wave front propagates by one ∆x0, the wave
front will be shifted by 2×∆x0 between adjacent images. In the example discussed above, the wave
front shift between adjacent images will be by one unit of length.

iterate.level0.number of steps (int) This number tells shapes how many time steps to perform alto-
gether.

iterate.use substep (int) This parameter matters only when the computations are carried out on a
multigrid. When it is set to 0, shapes will use the same time step for each multigrid level. This, of
course, implies that in this case the time step should be chosen based on the finest grid-level spacing
requested. When it is set to 1, shapes will use a shorter time step for finer grid levels, as discussed
in Section 2.6.1. The space refinement ratio between adjacent grid levels is 2; and, in this case, the
time refinement ratio between adjacent grid levels is 3. This latter ratio is required to synchronize
E and H time slices between adjacent levels and across the whole multigrid.

Let us look at the iterate group in shapes.input provided with the program source:

42

(x0, y0)

(xlo, ylo)

(xhi, yhi)

Figure 7: Definition of the PML region boundary. The outer box represents the whole computational
domain. The PML region is between the inner and the outer box.

#

Iteration group

#

iterate.level0.stride = 4

iterate.level0.image_frequency = 4

iterate.level0.number_of_steps = 4800

iterate.use_substep = 0

The stride of 4 means that four time steps will be needed to push the wave front through the distance of
∆x0 = δl/2, hence ∆t0 = ∆x0/4 = δl/8. The images will be dumped every 4× 4 = 16 time steps; in other
words, the wave front will have moved by 4∆x0 = 2 δl between the snapshots. We are going to make 4,800
time steps altogether, thus pushing the wave front through the distance of 1, 200∆x0 = 600 δl.

3.3.4 The pml Group

The PML ABCs are characterized just by specifying the boundary of the PML region. The user needs to
specify the lower-left and the upper-right corners of the boundary box, as shown in Figure 7. shapes takes
care of all the rest. The keywords are as follows:

pml.x lo (Real)

pml.y lo (Real) The x and y coordinates (in δl) of the lower-left corner of the PML boundary box.

pml.x hi (Real)

pml.y hi (Real) The x and y coordinates (in δl) of the upper-right corner of the PML boundary box.

Consider again the example discussed in Section 3.3.2. There we restricted the total field region to a box
defined by the (10 δl, 10 δl) and (90 δl, 90 δl) corner points. We can therefore define our PML region by
the (5 δl, 5 δl) and (95 δl, 95 δl) corner points (the PML region is outside the box so defined). This is still
within the (0 δl, 0 δl) and (100 δl, 100 δl) computational domain, and it yields ten grid cells to attenuate
the signal on each boundary, which should be sufficient because the incident signal is usually attenuated
within just seven cells or so. The distance between the PML boundary and the total field region boundary
is 5 δl, which is again ten grid cells:

43

#

PML group

#

pml.x_lo = 5

pml.y_lo = 5

pml.x_hi = 95

pml.y_hi = 95

File shapes.input specifies broader margins. Here we have

#

PML group

#

pml.x_lo = 10

pml.y_lo = 10

pml.x_hi = 90

pml.y_hi = 90

and the total field region is then restricted (in the signal group) to the (20 δl, 20 δl)(80 δl, 80 δl) box. This
gives us twenty cells to attenuate the incident signal, which is sufficient, and twenty cells between the total
field region boundary and the PML boundary. This corridor is wide enough to carry out analysis of the
scattered field, for example, to evaluate the far field limit. shapes doesn’t do this yet, mostly because
we’re interested in the near field region within this project, but this feature is definitely on the drawing
board.

3.3.5 The signal Group

Signals that shapes can inject into the total field region have been discussed in Section 2.4, pages 9-16.
See, in particular, Table 1 on page 10. The mode numbers are the numbers used in the shapes input
file to select a particular signal. The signal parameters are then provided as needed, together with the
specification for the total field region. The total field region must be located outside the PML region, that
is, entirely within the inner box in Figure 7.

The keywords to do all this are as follows:

signal.x lo (Real)

signal.y lo (Real) The x and y coordinates (in δl) of the lower-left corner of the total field region.

signal.x hi (Real)

signal.y hi (Real) The x and y coordinates (in δl) of the upper-right corner of the total field region.

signal.mode (int) The type of signal to be injected, see Table 1. Avoid modes 0 and 1, which are here
for “historic” reasons only. Be careful with mode 6, and ensure that the effective λ is not going
to become 0 (or just too small) anywhere throughout the whole computation. It is better to use a
tanh chirp because it provides natural bounds for λ at both ends. Test the signal parameters using
Gnuplot, as discussed in Section 2.4, prior to running shapes. The following Gnuplot command, for
example, will work for the tanh ramped harmonic wave:

44

set sample 800,800

plot [z=-200:200] [-1.5:1.5] \

f(z) = 0.5 * (1 - tanh(a * z)) * sin(6.2831853 * z / l), \

a = 0.02, l = 20, f(z)

signal.t0 (Real) The signal delay time t0 (in δt), as in the formula ζ = nx(x−x0)+ ny(y− y0)− (t− t0).
shapes determines x0 and y0 automatically, depending on the direction from which the signal is
injected and they default to xlo, xhi, ylo, or yhi of the total field region box as the case may be. The
user can choose t0, though. This parameter should be chosen so that at t = 0, the center or the ramp
of the signal is sufficiently far from the total field region to make zero a good initial solution within
the total field region.

signal.lambda (Real)

signal.sigma (Real)

signal.alpha (Real)

signal.beta (Real) These are the signal parameters λ, σ, α, and β as used in Table 1.

signal.vx (Real)

signal.vy (Real) These are the components vx and vy of a vector v that points in the direction of signal
propagation. This vector does not have to be normalized, because shapes normalizes it internally
anyway, evaluating

nx =
vx

√

v2
x + v2

y

ny =
vy

√

v2
x + v2

y

.

The file shapes.input discussed above has the following signal specification:

#

Signal injection group

#

signal.x_lo = 20

signal.y_lo = 20

signal.x_hi = 80

signal.y_hi = 80

signal.mode = 7

signal.t0 = 300

signal.lambda = 10

signal.sigma = 60

signal.alpha = 0

signal.beta = 0.0012

signal.vx = 0

signal.vy = 1

45

The total field region is therefore confined to the box defined by the two corners, (20 δl, 20 δl) and
(80 δl, 80 δl). The signal to be injected is number 7, a Gaussian envelope quadratic chirp. It will be de-
layed by 300 δt, meaning that the peak of the Gaussian envelope will not enter the total field region until
t = 300 δt. We also find that λ = 10, σ = 60, and β = 0.0012. The signal is injected in the y direction.

If we wanted to inject a signal such as the one shown in Figure 1 on page 11, the specifications could
be as follows.

signal.mode = 10

signal.t0 = 300

signal.lambda = 20

signal.sigma = 60

signal.alpha = 10

signal.beta = 0.15

signal.vx = 0

signal.vy = 1

3.3.6 The metal Group

The metal group is at the heart of the input. Here we define the media, their characteristics and layout.
This group therefore naturally splits into two subgroups. The first one, called metal.media, is used to
specify the metals, and the second one, called metal , is used to specify the distribution.

The medium, as we discussed in Section 2.2, pages 5-7, is described in terms of a unified Drude-Lorentz
model with an arbitrary number of resonances given by equation (1), page 5. Each medium is characterized
by ε∞ followed by an array of εk, αk, δk, and ωk, where k runs through the resonances. Of these parameters
all are dimensionless with the exception of ωk, which should be specified in terms of 1/δt.

This specification is easy to do. Observe that

ωδt
1

δt
= ωδt

1

δt

s

s
= ωδt

s

δt

1

s
= ωs

1

s
.

Note that both ωδt and ωs are unitless quantities, just pure numbers. So, we find that

ωs = ωδt
s

δt
or ωs

1

s
= ωδt

1

δt
,

which is where we could have started. Hence

ωδt = ωs
δt

s
. (26)

In other words, to convert an ωs given in the units of hertz (1Hz = 1 s−1) to an ωδt given in the units of
1/δt, we need only to multiply ωs by δt expressed in seconds. For example, we found in Section 3.3.3 that
δt = 8.3391 × 10−17 s (cf. equation (25) on page 42). So, if, say, we have ωD = 1.3257 × 1016 Hz, then ωD

in the units of 1/δt is going to be

ωDδt = ωDs ×
δt

s
= 1.3257 × 1016 1

s
× 8.3391 × 10−17 s = 1.106.

This is a much easier number to work with than 1.3257 × 1016, and it comes out unit-less, too.
Observe that the result would be different if we thought of a principal harmonic wave in Section

3.3.2 as being, say, 4000 Å rather than 5000 Å and if we sought to squeze only two full wavelengths into

46

the computational domain rather than four. These considerations would yield a different δl, a different
δt = δl/c, and hence a different ωDδt.

We again find that since Maxwell equations do not define a unit of length, even in the presence of
media, their solutions can always be scaled in various ways to fit various experimental situations.

The keywords used to define the media are as follows

metal.media.number of media (int) This parameter tells shapes how many different metals we are going
to have in the system.

metal.media.number of terms (int) This parameter tells shapes how many resonance terms we are going
to use for each metal. All metals must be defined by the same number of resonances. If we have two
metals and one is defined by 3 resonances, whereas the other one by 2 resonances only, then the
second metal must be still entered in terms of 3 resonances, but the last resonance should be set to
zero.

The numbers that characterize the metals must now be entered as vectors of reals:

metal.media.epsilon infty (vector of Real) The values of ε∞ for each of the metals must be entered in
a single line and separated by spaces.

metal.media.omega (vector of Real) The values of ωk for each of the metals must be entered in a single
line and separated by spaces. For multiple resonance metals, enter the numbers for the first metal,
then for the second metal, and so on.

metal.media.alpha (vector of Real) The values of αk for each of the metals must be entered in a single
line and separated by spaces. For multiple resonance metals, enter the numbers for the first metal,
then for the second metal, and so on.

metal.media.delta (vector of Real) The values of δk for each of the metals must be entered in a single
line and separated by spaces. For multiple resonance metals, enter the numbers for the first metal,
then for the second metal, and so on.

metal.media.epsilon (vector of Real) The values of εk for each of the metals must be entered in a single
line and separated by spaces. For multiple resonance metals, enter the numbers for the first metal,
then for the second metal, and so on.

Let us consider the following example. Suppose we get a metal model given by

D(ω) = ε0

(

ε∞ −
ω2

D

ω2 − iΓDω
+

g1ω
2
1∆ε

ω2
1 + 2iωδ1 − ω2

+
g2ω

2
2∆ε

ω2
2 + 2iωδ2 − ω2

)

E(ω). (27)

First we need to squeeze this model into formula (1), page 5, namely,

D(ω) =

(

ε∞ +
∑

k

εk

αk + i2δk(ω/ωk)− (ω/ωk)2

)

E(ω). (28)

We already got rid of ε0 by absorbing it into E and D. Now consider one of the two Lorentz terms in
equation (27). It can be rewritten as follows:

gkω
2
k∆ε

ω2
k + 2iωδk − ω2

=
gk∆ε

1 + 2i δk

ωk

ω
ωk

−
(

ω
ωk

)2 . (29)

47

Let us match it against
εk

αk + 2iδk
ω
ωk
−
(

ω
ωk

)2 . (30)

We can transform the term from (29) into the term from (30) with the following substitutions:

1 → αk

δk

ωk
→ δk

gk∆ε → εk,

where the terms on the left-hand side come from equation (27) and the terms on the right-hand side come
from equation (28). In the process, the units of δk on the left-hand side cancel out, so that all quantities
on the right hand-side are unitless.

The Drude term in equation (27) can be rewritten as follows:

− 1
(

ω
ωD

)2
− iΓD

ωD

ω
ωD

=
1

iΓD

ωD

ω
ωD
−
(

ω
ωD

)2 .

Let us compare this against
εk

αk + 2iδk
ω
ωk

−
(

ω
ωk

)2 .

Again, we find that we can match both sides with the following substitutions:

0 → αk

ΓD

2ωD
→ δk

1 → εk

where quantities on the left-hand side are from equation (27) and quantities on the right-hand side are
from equation (28).

Given the following values for the parameters found in (27),

ε∞ = 2.36461

ωD = 1.3257 × 1016

ΓD = 1.136268 × 1014

ω1 = 6.6457856 × 1015

g1 = 0.266286

δ1 = 4.2487 × 1014

ω2 = 7.863688 × 1015

g2 = 1− g1

δ2 = 8.316865 × 1014

∆ε = 1.1830916

we obtain the following numbers to be typed into the shapes input file.

48

For the Drude term we get

α = 0

δ =
ΓD

2ωD
=

1.136268 × 1014

2× 1.3257 × 1016
= 0.004286

ε = 1.

For the first Lorentz term we have

α = 1

δ =
δ1

ω1
=

4.2487 × 1014

6.6457856 × 1015
= 0.06393

ε = g1∆ε = 0.266286 × 1.1830916 = 0.31504.

And finally for the second Lorentz term we have

α = 1

δ =
δ2

ω2
=

8.316865 × 1014

7.863688 × 1015
= 0.10576

ε = g2∆ε = (1− 0.266286) × 1.1830916 = 0.86805.

We now need to evaluate the omegas, or resonance frequencies. We multiply them by δt = 8.3391 ×
10−17 s, and get the following:

ωD = 1.3257 × 1016 1

s
→ 1.3257 × 1016 1

s
× 8.3391 × 10−17 s = 1.106

ω1 = 6.6457856 × 1015 1

s
→ 6.6457856 × 1015 1

s
× 8.3391 × 10−17 s = 0.554

ω2 = 7.863688 × 1015 1

s
→ 7.863688 × 1015 1

s
× 8.3391 × 10−17 s = 0.656.

Now let us enter these numbers into the shapes input file. The entry for this single metal would look as
follows:

#

The media group

#

metal.media.number_of_media = 1

metal.media.number_of_terms = 3

metal.media.epsilon_infty = 2.36461

metal.media.omega = 1.106 0.554 0.656

metal.media.alpha = 0 1 1

metal.media.delta = 0.004286 0.06393 0.10576

metal.media.epsilon = 1 0.31504 0.86805

What if we have two metals, for example, one as defined above, and the other one by a single Drude term
only? Then the input would look as follows:

49

#

The media group

#

metal.media.number_of_media = 2

metal.media.number_of_terms = 3

#--

metal 1 metal 2

#--

metal.media.epsilon_infty = 2.36461 2.36461

metal.media.omega = 1.106 0.554 0.656 1.106 0 0

metal.media.alpha = 0 1 1 0 0 0

metal.media.delta = 0.004286 0.06393 0.10576 0.004286 0 0

metal.media.epsilon = 1 0.31504 0.86805 1 0 0

#--

(When we describe media layout, we will refer to metal 1 as “1” and to metal 2 as “2” in the appropriate
medium specification arrays.)

Will this work? Killing ω2, α2, and δ2 will result in the following update for field S2 (cf. Section 2.2,
equation (5) on page 6):

Sk ← 2Sk − Skold. (31)

If Sk and Skold are zero for starters, which they are, then Sk stays zero, and therefore these terms do
not alter E. An observant reader will notice that it is sufficient to kill only ωk to achieve this effect. An
observant reader will also notice that if Sk = Skold, then equation (31) turns into Sk ← Sk, meaning that
Sk stays constant.

Now, let us turn to the remainder of the metal group and see how to define media layout.
shapes lets users define layouts by a combination of rectangles (called boxes for historical reasons),

circles (called cylinders for historical reasons), rings, ellipses, and triangles. Multiple occurrences of these
figures may be placed within the total field region. The figures may overlap. Additionally, cuts may be
made in a layout specified by the imposition of masks, which are defined also in terms of mask rectangles,
mask circles, mask rings, mask ellipses, and mask triangles.

With each layout object—a rectangle, a circle, a ring, an ellipse, or a triangle—we associate a metal
from the list constructed above. It is a good idea not to associate different metals with overlapping figures,
although the algorithm will handle such a circumstance, letting metals associated with circles win over
metals associated with rectangles and metals associated with triangles win over metals associated with
circles. But this ordering may change in future releases of the program.

The layout figures are defined by the means of the following keywords.

metal.boxes.number (int) Total number of boxes to be declared explicitly.

metal.boxes.x lo (vector of Real)

metal.boxes.y lo (vector of Real) The xlo and ylo coordinates (in δl) of the lower-left corner of each
box. The coordinates for successive boxes should be listed in the same lines and separated with
spaces.

metal.boxes.x hi (vector of Real)

metal.boxes.y hi (vector of Real) The xhi and yhi coordinates (in δl of the upper-right corner of each
box. The coordinates for successive boxes should be listed in the same lines and separated with
spaces.

50

metal.boxes.medium (vector of int) The number of the medium associated with a given box. The
numbers for successive boxes should be listed in the same line and separated with spaces.

metal.boxes.repeats (vector of int) Number of times each of the boxes specified explicitly should be
repeated.

Every individual figure defined on a shapes input file can be repeated an arbitrary number of times by
translation. All properties of the figure are repeated including the medium. The number of repeats should
not be confused with metal.boxes.number . The latter should be thought of as the number of columns in the
input file definitions rather than the ultimate number of boxes that will be produced by the definitions.
Setting repeats to zero or omitting them altogether disables repeats.

metal.boxes.vx (vector of Real)

metal.boxes.vy (vector of Real) Translation vectors (vx, vy) to be used in repeats, if repeats have been
requested. One for each box specified explicitly.

For example, consider the layout displayed in figure 8. The outermost box, the one that encloses

1

2

Figure 8: Two metal-filled boxes defined by the specifications provided in the example.

everything, is the whole computational domain defined by the two points (xlo, ylo) = (0, 0) and (xhi, yhi) =
(100, 100). Within the domain we have first the PML region given by (xlo, ylo) = (5, 5) and (xhi, yhi) =
(95, 95) and then the total field region given by (xlo, ylo) = (10, 10) and (xhi, yhi) = (90, 90). Within
the total field region we have two metal boxes. The one on the left is given by (xlo, ylo) = (20, 20) and
(xhi, yhi) = (40, 70) and is filled with metal number 1. The one on the right is given by (xlo, ylo) = (60, 30)
and (xhi, yhi) = (80, 80) and is filled with metal number 2. Here is what the input file specification of both
boxes looks like.

metal.boxes.number = 2

#------------------------------------

box 1 box 2

#------------------------------------

metal.boxes.x_lo = 20 60

metal.boxes.y_lo = 20 30

metal.boxes.x_hi = 40 80

51

metal.boxes.y_hi = 70 80

metal.boxes.medium = 1 2

#------------------------------------

If the boxes were to overlap then the metal of the second box would win over the metal of the first box in
the overlap region.

If both boxes were filled with an identical metal, we could use the repeats parameter and a translation
vector to specify them because they’re both of the same shape. In this case the specification would look
as follows.

metal.boxes.number = 1

#----------------------------

box 1

#----------------------------

metal.boxes.x_lo = 20

metal.boxes.y_lo = 20

metal.boxes.x_hi = 40

metal.boxes.y_hi = 70

metal.boxes.medium = 1

metal.boxes.repeats = 1

metal.boxes.vx = 40

metal.boxes.vy = 10

#----------------------------

Let us note that this time metal.boxes.number is 1, not 2, even though we end up with two boxes in the
end. This is because we provide explicit specifications for one box only, and then it gets repeated. Also,
even though we end up with two boxes, there is only one repeat because one box has already been specified
explicitly.

metal.cylinders.number (int) Total number of cylinders (circles) to be declared explicitly.

metal.cylinders.xc (vector of Real)

metal.cylinders.yc (vector of Real) The xc and yc coordinates (in δl) of the center of each circle.
Entries that correspond to successive circles should be typed in the same lines and separated with
spaces.

metal.cylinders.rc (vector of Real) Radius rc (in δl) of each circle. Entries that correspond to successive
circles should be typed in the same line and separated with spaces.

metal.cylinders.medium (vector of int) Number of the medium associated with a given circle. The
numbers for successive circles should be listed in the same line and separated with spaces.

metal.cylinders.repeats (vector of int) Number of times each of the circles specified explicitly should
be repeated.

metal.cylinders.vx (vector of Real)

metal.cylinders.vy (vector of Real) Translation vectors (vx, vy) to be used in the repeats, one for each
circle specified explictly.

52

1

2

Figure 9: Two metal-filled circles defined by the specifications provided in the example.

For example, consider the layout displayed in Figure 9. Here we have two circles. The one on the left
is centered on (xc, yc) = (30, 40), its radius rc is 10, and. . . is filled with metal number 1. The circle on
the right is centered on (xc, yc) = (70, 60), its radius rc is 15, and. . . is filled with metal number 2. Here is
what the shapes specification of this layout looks like.

metal.cylinders.number = 2

#--

circle 1 circle 2

#--

metal.cylinders.xc = 30 70

metal.cylinders.yc = 40 60

metal.cylinders.rc = 10 15

metal.cylinders.medium = 1 2

#--

We cannot define this pattern by repeats, not only because the circles are filled with different metals, but
also because the circles have different radii.

A single ring could be defined by a combination of a circle and a smaller circular mask, but this would
not work for a set of concentric circles. For this reason shapes provides explicit keywords for rings.

metal.rings.number (int) Total number of rings to be declared explicitly.

metal.rings.xc (vector of Real)

metal.rings.yc (vector of Real) x and y coordinates of ring centers. Numbers for successive rings should
be listed in the same line and separated with spaces.

metal.rings.r lo (vector of Real)

metal.rings.r hi (vector of Real) Low and high radii of the rings. Numbers for successive rings should
be listed in the same line and separated with spaces.

metal.rings.medium (vector of int) Number of the medium that is associated with a given ring. Entries
for successive rings should be listed in the same line and separated with spaces.

53

metal.rings.repeats (vector of int) Number of times each of the rings specified explicitly should be
repeated.

metal.rings.vx (vector of Real)

metal.rings.vy (vector of Real) Translation vectors (vx, vy) to be used in the repeats. One for each
ring specified explicitly.

Ellipses in shapes can be oriented any way, unlike ellipses in TEX, or in pic, which can be oriented
horizontally or vertically only.

metal.ellipses.number (int) Total number of ellipses to be declared explicitly.

metal.ellipses.xa (vector of Real)

metal.ellipses.ya (vector of Real)

metal.ellipses.xb (vector of Real)

metal.ellipses.yb (vector of Real) x and y coordinates of the two foci of the ellipses. The numbers for
successive ellipses should be listed in the same lines and separated with spaces.

metal.ellipses.sum (vector of Real) The sum of distances between a point on the circumference of an
ellipse and its foci, that is, for a point (xc, yc) on the circumference, the sum is

√

(xc − xa)
2 + (yc − ya)

2 +

√

(xc − xb)
2 + (yc − yb)

2.

This number is the same for all points of the ellipse and it defines, together with the foci, the ellipse.
The orientation of the ellipse is defined by the direction of the vector that links the two foci of the
ellipse. The sums for successive ellipses should be listed in the same line and separated with spaces.

metal.ellipses.medium (vector of int) Number of the medium that is associated with a given ellipse.
Entries for successive ellipses should be listed in the same line and separated with spaces.

metal.ellipses.repeats (vector of int) Number of times each of the ellipses specified explicitly should
be repeated.

metal.ellipses.vx (vector of Real)

metal.ellipses.vy (vector of Real) Translation vectors (vx, vy) to be used in repeats. One for each ellipse
specified explicitly.

The number referred to as the sum above is the length of the major axis of the ellipse as well. Let us
call this number l. Let the distance between the foci be d and let the minor axis of the ellipse be s. Then,
from the Pythagoras theorem

(

d

2

)2

+
(s

2

)2
=

(

l

2

)2

Hence, the length of the minor axis of the ellipse is given by

s =
√

l2 − d2

Eccentricity of an ellipse is defined as

e =
√

1− s2/l2 =

√

1− l2 − d2

l2
=

d

l

54

and is 0 for a circle (d = 0) and 1 for an infinitely thin ellipse (d = l). For an ellipse to look more like an
egg than a circle, this parameter has to be quite close to 1, for example, 0.8.

Triangles:

metal.triangles.number (int) Total number of triangles to be declared explicitly.

metal.triangles.xa (vector of Real)

metal.triangles.ya (vector of Real)

metal.triangles.xb (vector of Real)

metal.triangles.yb (vector of Real)

metal.triangles.xc (vector of Real)

metal.triangles.yc (vector of Real) The x and y coordinates (in δl) of triangle points A, B and C.
Entries that correspond to successive triangles should be typed in the same line and separated with
space.

metal.triangles.medium (vector of int) Number of the medium associated with a given triangle. En-
tries that correspond to successive triangles should be typed in the same line and separated with
spaces.

metal.triangles.repeats (vector of int) Number of times each of the triangles specified explicitly should
be repeated.

metal.triangles.vx (vector of Real)

metal.triangles.vy (vector of Real) Translation vectors (vx, vy) to be used in repeats. One for each
triangle specified explicitly.

For example, consider the layout displayed in Figure 10. Here we have two triangles. The first one is

2

1

Figure 10: Two metal-filled triangles defined by the specifications provided in the example.

given by (xA, yA) = (20, 20), (xB , yB) = (50, 20), and (xC , yC) = (30, 50) and is filled with metal number
2. The second triangle is given by (xA, yA) = (50, 40), (xB , yB) = (80, 60), and (xC , yC) = (60, 80) and is
filled with metal number 1. Their shapes specification looks as follows:

55

metal.triangles.number = 2

#--

triangle 1 triangle 2

#--

metal.triangles.xa = 20 50

metal.triangles.ya = 20 40

metal.triangles.xb = 50 80

metal.triangles.yb = 20 60

metal.triangles.xc = 30 60

metal.triangles.yc = 50 80

metal.triangles.medium = 2 1

#--

These simple semantics, especially the triangle semantics, are surprisingly powerful. It is possible to
construct quite elaborate shapes by combining triangles and circles. Every box can be made of two triangles,
but it is computationally easier and cheaper to check whether a point belongs to a box.

On top of these we have mask semantics, which can be used in exactly the same way as the above
semantics to define various shapes. But with the mask shapes we make cuts in the metal layout. A mask
object always wins over a metal object.

The mask keywords are as follows:

metal.mask.boxes.number (int)

metal.mask.boxes.x lo (vector of Real)

metal.mask.boxes.y lo (vector of Real)

metal.mask.boxes.x hi (vector of Real)

metal.mask.boxes.y hi (vector of Real)

metal.mask.boxes.repeats (vector of int)

metal.mask.boxes.vx (vector of Real)

metal.mask.boxes.vy (vector of Real)

metal.mask.cylinders.number (int)

metal.mask.cylinders.xc (vector of Real)

metal.mask.cylinders.yc (vector of Real)

metal.mask.cylinders.rc (vector of Real)

metal.mask.cylinders.repeats (vector of in)

metal.mask.cylinders.vx (vector of Real)

metal.mask.cylinders.vy (vector of Real)

metal.mask.rings.number (int)

metal.mask.rings.xc (vector of Real)

56

metal.mask.rings.yc (vector of Real)

metal.mask.rings.r lo (vector of Real)

metal.mask.rings.r hi (vector of Real)

metal.mask.rings.repeats (vector of int)

metal.mask.rings.vx (vector of Real)

metal.mask.rings.vy (vector of Real)

metal.mask.ellipses.number (int)

metal.mask.ellipses.xa (vector of Real)

metal.mask.ellipses.ya (vector of Real)

metal.mask.ellipses.xb (vector of Real)

metal.mask.ellipses.yb (vector of Real)

metal.mask.ellipses.sum (vector of Real)

metal.mask.ellipses.repeats (vector of int)

metal.mask.ellipses.vx (vector of Real)

metal.mask.ellipses.vy (vector of Real)

metal.mask.triangles.number (int)

metal.mask.triangles.xa (vector of Real)

metal.mask.triangles.ya (vector of Real)

metal.mask.triangles.xb (vector of Real)

metal.mask.triangles.yb (vector of Real)

metal.mask.triangles.xc (vector of Real)

metal.mask.triangles.yc (vector of Real)

metal.mask.triangles.repeats (vector of int)

metal.mask.triangles.vx (vector of Real)

metal.mask.triangles.vy (vector of Real)

Following is a simple example. Figure 11 shows a rectangle defined by (xlo, ylo) = (20, 20) and (xhi, yhi) =
(80, 80) that is filled with metal number 2. There is a circular cut-out in the middle of the rectangle, cen-
tered on (xc, yc) = (50, 50) with radius rc = 15. Here is the shapes specification of this layout

57

2 2

2 2

Figure 11: A metal-filled rectangle with a circular cut-out in the middle.

metal.boxes.number = 1

metal.boxes.x_lo = 20

metal.boxes.y_lo = 20

metal.boxes.x_hi = 80

metal.boxes.y_hi = 80

metal.boxes.medium = 2

metal.mask.cylinders.number = 1

metal.mask.cylinders.xc = 50

metal.mask.cylinders.yc = 50

metal.mask.cylinders.rc = 15

Certain metal-on-metal structures can be hard to construct. For example, a circular metal number �
2 patch inside a metal number 1 rectangle can be easily defined, but not the other way round (i.e., a
rectangular metal patch inside a circle) because a circle overwrites a rectangle. The right remedy for this
shortcoming would be to use a more elaborate language for defining layouts, similar to TEX or pic. We
intend to develop and implement such a language for the future 3-dimensional version of the code.

Still, the set of tools provided is powerful and flexible enough that one can do a lot with it. Figure 12
shows how to define a rounded corner within the existing semantics. The circle on the left is a mask, and

Figure 12: How to define a rounded corner in shapes.

it cuts a rounded corner in the little block that is inserted between the vertical and horizontal rectangles

58

at the left and top sides of the domain. On the other hand, the circle on the right is a full circle that joins
the horizontal and vertical rectangles at the inner corner. In this case the curvature radius at both sides
of the bend is the same.

The shapes mask is a “lift off” mask, to use terminology borrowed from microelectronics. It is defined
prior to any deposition of metal, and it “lifts off” whatever metal has been put on top of it.

3.3.7 The tag Group

The next two groups, the tag group and the refine group (see Section 3.3.8) are related to each other and
relevant only if construction of a multigrid has been requested.

A multigrid can be generated dynamically, by using the Adaptive Mesh Refinement (AMR) technique,
or statically. AMR is not really necessary for the type of problems that shapes is designed to simulate,
but it is available. A static generation of a multigrid is preferable and results in cheaper time-stepping,
because regridding is an expensive procedure. Also possible in shapes is a combination of static and
dynamic multigridding.

Multigridding works by generating progressively finer meshes in selected locations. The meshes are
organized into a vector with each mesh referred to as a level . Level 0 is the coarsest mesh that is defined
in the level0 group. Then we have level 1, which must be embedded entirely within level 0, level 2, which
must be embedded entirely within level 1, and so on. The levels sit inside each other like Russian dolls.
Each level may consist of disconnected patches.

The procedures that build a multigrid work by looking at level 0 grid cells first and tagging them for
refinement if need be. The cells get refined, generating a level 1 grid. The procedures are then repeated
within the level 1 grid, tagging its cells and refining them so as to generate level 2 grid, and so on until
a hierarchy of grids is built. The hierarchy stops when the maximum desired number of levels is reached.
This number is passed through the following keyword.

tag.max number of levels (int)

Setting this number to 1 disables the multigrid building procedure and multigrid computations, and this
is what the user should do, unless a multigrid is really needed.

If multigridding has been requested by setting tag.max number of levels to, say, 3 or 4, then the multi-
grid generation procedures look at the next three keywords.

tag.on location (int)

tag.on diffs (int)

tag.on values (int)

Each of these is a logical switch. When set to zero, it disables cell tagging on location or on diffs or on

values. When set to 1, it enables tagging. When all these switches are set to zero, then no multigrid is
built, even if tag.max number of levels is greater than 1.

Tagging on location means that cells are tagged for refinement depending on where they are. Tagging
on diffs means that cells are tagged for refinement if the energy density in the cells changes faster than a
certain threshold value. Tagging on values means that cells are tagged for refinement if the energy density
in the cells exceeds a certain threshold value.

When tagging on diffs or on values is on, then the user must provide vectors of thresholds, that is, a
vector of values that will be used as thresholds within subsequent levels. The keywords here are

tag.diff thresholds (vector of Real)

59

tag.value thresholds (vector of Real)

For example, in the following we have requested 4 levels, which will be referred to as level 0, the basic
level, level 1, level 2, and level 3.

tag.max_number_of_levels = 4

tag.on_diffs = 1

tag.diff_thresholds = 0.02 0.05 0.08

tag.on_values = 1

tag.value_thresholds = 0.03 0.08 0.12

We have also requested that tagging cells for refinement be done by looking at how fast the energy density
changes within the cells and how large the value of the energy density actually is. Hence, cells of level 0 will
be tagged if the energy density within the cell changes by 0.02 within ∆t0. Cells of level 1 will be tagged
if the energy density within the cell changes by 0.05 within ∆t0 (because the energy density is computed
for all levels every level 0 time step, ∆t0, only). Cells of level 2 will be tagged if the energy density within
the cell changes by 0.08 within ∆t0. Cells within level 3 will not be tagged because we don’t want level 4.
Hence, there are only three Reals in the vector, not four. Additionally, cells of level 0 will be tagged for
refinement if the energy density within the cell exceeds 0.03, cells of level 1 will be tagged if the energy
density within the cell exceeds 0.08 and cells of level 2 will be tagged for refinement if the energy density
within the cell exceeds 0.12.

If tagging is also activated on location, then the locations must be defined by using semantics similar
to the metal layout semantics discussed in Section 2.2. The tagging procedures look at the following list
of keywords.

tag.boxes.number (int)

tag.boxes.x lo (vector of Real)

tag.boxes.y lo (vector of Real)

tag.boxes.x hi (vector of Real)

tag.boxes.y hi (vector of Real)

tag.boxes.repeats (vector of int)

tag.boxes.vx (vector of Real)

tag.boxes.vy (vector of Real)

tag.cylinders.number (int)

tag.cylinders.xc (vector of Real)

tag.cylinders.yc (vector of Real)

tag.cylinders.rc (vector of Real)

tag.cylinders.repeats (vector of int)

tag.cylinders.vx (vector of Real)

60

tag.cylinders.vy (vector of Real)

tag.triangles.number (int)

tag.triangles.xa (vector of Real)

tag.triangles.ya (vector of Real)

tag.triangles.xb (vector of Real)

tag.triangles.yb (vector of Real)

tag.triangles.xc (vector of Real)

tag.triangles.yc (vector of Real)

tag.triangles.repeats (vector of int)

tag.triangles.vx (vector of Real)

tag.triangles.vy (vector of Real)

tag.rings.number (int)

tag.rings.xc (vector of Real)

tag.rings.yc (vector of Real)

tag.rings.r lo (vector of Real)

tag.rings.r hi (vector of Real)

tag.rings.repeats (vector of int)

tag.rings.vx (vector of Real)

tag.rings.vy (vector of Real)

tag.ellipses.number (int)

tag.ellipses.xa (vector of Real)

tag.ellipses.ya (vector of Real)

tag.ellipses.xb (vector of Real)

tag.ellipses.yb (vector of Real)

tag.ellipses.sum (vector of Real)

tag.ellipses.repeats (vector of int)

tag.ellipses.vx (vector of Real)

tag.ellipses.vy (vector of Real)

tag.mask.boxes.number (int)

61

tag.mask.boxes.x lo (vector of Real)

tag.mask.boxes.y lo (vector of Real)

tag.mask.boxes.x hi (vector of Real)

tag.mask.boxes.y hi (vector of Real)

tag.mask.boxes.repeats (vector of int)

tag.mask.boxes.vx (vector of Real)

tag.mask.boxes.vy (vector of Real)

tag.mask.cylinders.number (int)

tag.mask.cylinders.xc (vector of Real)

tag.mask.cylinders.yc (vector of Real)

tag.mask.cylinders.rc (vector of Real)

tag.mask.cylinders.repeats (vector of int)

tag.mask.cylinders.vx (vector of Real)

tag.mask.cylinders.vy (vector of Real)

tag.mask.triangles.number (int)

tag.mask.triangles.xa (vector of Real)

tag.mask.triangles.ya (vector of Real)

tag.mask.triangles.xb (vector of Real)

tag.mask.triangles.yb (vector of Real)

tag.mask.triangles.xc (vector of Real)

tag.mask.triangles.yc (vector of Real)

tag.mask.triangles.repeats (vector of int)

tag.mask.triangles.vx (vector of Real)

tag.mask.triangles.vy (vector of Real)

tag.mask.rings.number (int)

tag.mask.rings.xc (vector of Real)

tag.mask.rings.yc (vector of Real)

tag.mask.rings.r lo (vector of Real)

tag.mask.rings.r hi (vector of Real)

62

tag.mask.rings.repeats (vector of int)

tag.mask.rings.vx (vector of Real)

tag.mask.rings.vy (vector of Real)

tag.mask.ellipses.number (int)

tag.mask.ellipses.xa (vector of Real)

tag.mask.ellipses.ya (vector of Real)

tag.mask.ellipses.xb (vector of Real)

tag.mask.ellipses.yb (vector of Real)

tag.mask.ellipses.sum (vector of Real)

tag.mask.ellipses.repeats (vector of int)

tag.mask.ellipses.vx (vector of Real)

tag.mask.ellipses.vy (vector of Real)

Instead of depositing metals, here we deposit subgridding. As was the case with metals, applying a tag
mask disables the generation of a subgrid in this area. The mask always wins over other shapes.

Observe that if tag.boxes.number , tag.cylinders.number , tag.rings.number , tag.ellipses, number , and
tag.triangles.number are all zero, then no on location tagging will be performed, even if tag.on location

is 1.

3.3.8 The refine Group

Once the cells of a given level have been tagged, they need to be refined, as discussed in Section 2.6.
Four parameters in the refine group can be used to provide additional specifications as to how the

refinement should be done.

refine.fill ratio (Real) This parameter tells Chombo how tightly to wrap subgrids around the areas
generated by the cell tagging routines. The generated subgrids will be tightest when this parameter
is set to 1.0. But this may produce a large number of very small boxes of grid points on top of some
larger boxes when the tagged regions are complicated.

The boxes of grid points we are talking about here are the atomic unit of Chombo parallelization
(see Section 2.7). Each CPU gets either nothing or a box of grid points to work on or several boxes.
If some boxes are very small and other very large, some CPUs may get very little work whereas other
CPUs may get overloaded. The fit will be most relaxed (i.e., the grids will be oversized and boxes
will be large) when this parameter is set to 0.0. Setting it to, say, 0.5, results in an oversized and
relaxed grid. We seldom use anything lower than 0.8.

refine.block factor (int) This is the smallest size of a box, in the generated grid cells, that Chombo will
use when building a refined grid. From our experience - this number should be a power of 2. If set to,
say, 3, 5 or 10 it may result in a subgrid build failure. When set to 4, the smallest box that Chombo
is going to generate will be 4× 4.

refine.buffer size (int) This parameter tells Chombo how deep to nest a finer level within a coarser level.
The distance between, say, a level 3 border and a level 2 border will be refine.buffer size level 2 cells.

63

refine.max size (int) This is the maximum size of a box that is going to be generated. When set, say,
to 100, the largest boxes that Chombo is going to generate will be 100 × 100.

Let us look at the following example.

refine.fill_ratio = 1.0

refine.block_factor = 2

refine.buffer_size = 8

refine.max_size = 50

Here we have asked Chombo to generate subgrids as tight as possible around the tagged regions. The
smallest boxes in the generated subgrids will be 2× 2 and the largest ones 50× 50. Level borders will be
separated by margins 8 cells wide.

3.3.9 The spectral Group

We have discussed spectral response in Section 2.5, page 16.
Only three keywords in the spectral group manage how spectral response is calculated, but these are

then enhanced by additional keywords in the output group that specify the fields to be analyzed. If no
fields are specified in the output group, then whatever is specified in the spectral group is void.

The keywords are as follows.

spectral.response (int) A logical switch. When it is set to 1, the computation of spectral response is
activated, but the user still has to specify the fields in the output group for this to work. When it is
set to 0, the computation of spectral response is disabled, regardless of what is going to be specified
in the output group.

When spectral.response is activated, then the user must also specify a number of frequencies and the
frequencies themselves.

spectral.number of frequencies (int) A number of angular frequencies for which the spectral response is
to be evaluated.

spectral.frequencies (vector of Real) A vector of angular frequencies, that is, ω = 2π/T , in natural
units, for which the spectral response is to be evaluated.

3.3.10 The output Group

The way shapes outputs data has been discussed in Section 2.8, page 24.
The following keywords are available to specify the output.

output.gnuplot Generate output for visualization with Gnuplot: 1 enables, 0 disables.

output.hdf5 Generate output in the HDF5 format: 1 enables, 0 disables.

output.Dx (int) Output the Dx field: 1 enables, 0 disables. The Dx field is dumped for the centers of
the cells, not for the sides, where it resides during the computations. This field is space interpolated
between Dx(x, y −∆y/2) and Dx(x, y + ∆y/2) before dumping.

output.Dy (int) Output the Dy field: 1 enables, 0 disables. The Dy field is dumped for the centers of
the cells, not for the sides, where it resides during the computations. This field is space interpolated
between Dy(x−∆x/2, y) and Dx(x + ∆x/2, y) before dumping.

64

output.Ex (int) Output the Ex field: 1 enables, 0 disables. This field is space interpolated before dumping
the same way as Dx.

output.Ey (int) Output the Ey field: 1 enables, 0 disables. This field is space interpolated before dumping
the same way as Dy.

output.E (int) Output the E =
√

E2
x + E2

y field: 1 enables, 0 disables. This field is calculated by using

space-interpolated cell-centered fields Ex and Ey.

output.Hz (int) Output the Hz field: 1 enables, 0 disables. The Hz field is output for the same time slice

as the E field. The data is actually interpolated between Hz(t − ∆t/2) and Hz(t + ∆t/2) prior to
the dump.

output.Energy (int) Ouput the energy density: 1 enables, 0 disables. The energy density is output for the

same time slice as the E field. Time-interpolated Hz data (see above) is used in the computation. It is
also output for the centers of the cells, so that space-interpolated E data is used in the computation.

output.Distrib Dx (int) Output the distribution of metal on the Dx grid sites: 1 enables, 0 disables.
Because the distribution of metal does not change with time, it is pointless to dump it for every
snapshot. This option is meant to be used for initial runs only. Once the user is happy with the
metal distribution and can get the picture, this option should be disabled.

output.Distrib Dy (int) Output the distribution of metal on the Dy grid sites: 1 enables, 0 disables. The
same comments apply as for output.Distrib Dx .

output.Ex ft (int) Output the Êx field for frequencies specified by the spectral.frequencies vector: 1
enables, 0 disables. Cell-centered Ex data is used in this computation.

output.Ey ft (int) Output the Êy field for frequencies specified by the spectral.frequencies vector: 1
enables, 0 disables. Cell-centered Ey data is used in this computation.

output.E ft (int) Output the Ê = F̂ (
√

E2
x + E2

y) field for frequencies specified by the spectral.frequencies

vector: 1 enables, 0 disables. Cell-centered data is used in this computation.

output.Hz ft (int) Output the Ĥz field for frequencies specified by the spectral.frequencies vector: 1
enables, 0 disables. Time-centered Hz data is used in this computation.

output.Energy ft (int) Output the energy spectral response field for frequencies specified by the spec-

tral.frequencies vector: 1 enables, 0 disables. Cell- and time-centered data are used in this computa-
tion.

output.tags (int) Output cells tagged for refinement: 1 enables, 0 disables. This option works with
Gnuplot output only.

output.boxes (int) Output subgrids: 1 enables, 0 disables. This option works with Gnuplot output only.
Subgrids are always included in the HDF5 output.

output.some levels only (int) Output a specified level or range of levels: 1 enables, 0 disables. If enabled,
it must be followed by output.from level and output.to level keywords.

output.from level (int) When output.some levels only is activated, dump levels beginning with this one
(inclusive).

65

output.to level (int) When output.some levels only is activated, dump levels up to this one (inclusive).

For example:

output.gnuplot = 1

output.hdf5 = 0

output.Dx = 0

output.Distrib_Dx = 0

output.Dy = 0

output.Distrib_Dy = 0

output.Ex = 1

output.Ex_ft = 1

output.Ey = 1

output.Ey_ft = 1

output.Hz = 0

output.Hz_ft = 0

output.Energy = 0

output.Energy_ft = 0

output.tags = 0

output.boxes = 1

output.some_levels_only = 1

output.from_level = 3

output.to_level = 4

Here we have requested Gnuplot style output, but HDF5 output is disabled. We are going to dump data
for E and for its spectral response, but not for H or energy. Only data for levels 3 and 4 will be dumped.
We are also going to dump level 3 and 4 grids (boxes). Note that if the program is run in parallel, no data
will be dumped at all, because only HDF5 data can be dumped for parallel runs.

4 Parallel Execution

shapes

will run in parallel under MPI on PC farms. We have it running on the ANL Jazz cluster
and on the University of Chicago TeraGrid cluster. The binary used for parallel runs is different from the
binary used for sequential runs. The parallel binary is wrapped in a script called pshapes.

We begin with a simple example that shows how to run parallel shapes on both Jazz and the University
of Chicago system.

4.1 TeraGrid example

Parallel jobs cannot be run interactively, so here we have to construct a PBS shell script. The script we
use on the TeraGrid can be found in the shapes source in the scripts subdirectory. The file is called
uc submit.sh:

66

(tg-login2) $ cat uc_submit.sh

#!/bin/bash

#PBS -m abe

#PBS -M gustav@indiana.edu

#PBS -l walltime=01:00:00

#PBS -l nodes=4:ia64-compute

#PBS -N Example

#PBS -A TG-SEC502004T

#

cd /disks/scratchgpfs1/gustav

[-d Example] || mkdir Example

cd Example

cp $HOME/src/Mine/Current/Shapes-Jan19-1811/src/pshapes.input .

NN=‘wc -l $PBS_NODEFILE | awk ’ { print $1 } ’‘

echo Got $NN nodes on $PBS_NODEFILE:

cat $PBS_NODEFILE

mpirun -np $NN -machinefile $PBS_NODEFILE $HOME/bin/pshapes pshapes.input

(tg-login2) $

The first line of the script, the one with the “-m abe” option, tells PBS to send e-mail when the job begins
its execution, when it ends and when it aborts (for some reason). The second line provides PBS with the
needed e-mail address. Line 3 reserves 1 wall-clock hour for the job’s execution. If the job tries to run longer
than 1 hour, PBS will terminate it. Four cluster nodes are requested in the “-l nodes=4:ia64-compute”
statement and I ask that they be all of the IA64 variety. The name of the job will be “Example”; this is
how the job will show in the PBS listing. Finally there is an account line. The account option is “-A”. The
user inserts her own project number here.

Now we have the shell script itself. First we go to our directory on the parallel file system

/disks/scratchgpfs1/gustav

The construct

[-d Example] || mkdir Example

is equivalent to

If a subdirectory “Example” exists, then fine, otherwise make it.

It is a lazy evaluation or construct with [being equivalent to the unix command test and || meaning
or.

At this stage the Example subdirectory should exist, and we enter it. We copy a new input file
pshapes.input from the source, then inspect the number of nodes with the wc command. This command
counts the number of lines on a file, here referred to as $PBS_NODEFILE, that is going to be generated by
PBS and that will contain the names of the nodes allocated to the run. We print the content of the file
with the cat command. This is worth doing in case something goes wrong. We can then draw the attention
of system administrators to the problem.

Last, we invoke mpirun with appropriate options—the number of nodes we want to use and the location
of the node file—and point it to the MPI program we want to execute, which here is pshapes. The last

67

argument on the command line is the name of the shapes input file, which for the parallel run is called
pshapes.input.

There are two differences between pshapes.input and shapes.input. The first difference is that now

level0.nbx = 2

whereas previously it was 1. This means that shapes is going to divide the computational domain into
boxes so that two boxes will fit in the x direction and two will also fit in the y direction, because the
domain is square. We’ll end up with four boxes. This way each of the four MPI processes will get one box
to work with.

The second difference is that this time we have disabled GNU style output and enabled HDF5 output:

output.gnuplot = 0

output.hdf5 = 1

Now we are ready to submit the job:

(tg-login2) $ qsub uc_submit.sh

237693.tg-master.uc.teragrid.org

(tg-login2) $

and the job is queued. As requested, mail will be sent to the user when the job gets to run.
Once this happens, we’ll see that the Examples directory fills with HDF5 files:

(tg-login2) $ ls Example

fields_001.hdf5 fields_004.hdf5 fields_007.hdf5 pout.0 pout.3

fields_002.hdf5 fields_005.hdf5 fields_008.hdf5 pout.1 pshapes.input

fields_003.hdf5 fields_006.hdf5 fields_009.hdf5 pout.2

(tg-login2) $

Also, four additional files have been created in this directory: pout.0 through pout.3. These are diagnostic
files that correspond to MPI processes. File pout.0 contains output similar to that produced by the
sequential version of the program. Other files will usually contain less, because some shapes routines
produce output only for the MPI process of rank 0.

When the program finishes its execution, mail will be sent to the user again, and, additionally, two
PBS diagnostics files will be left in the directory from which the job was submitted:

(tg-login2) $ ls

Example.e237693 Example.o237693 uc_submit.sh

(tg-login2) $

File Example.e237693 should normally be empty, unless something has gone wrong. File Example.o237693
contains the output of the PBS script, which here looks as follows:

68

(tg-login2) $ cat Example.o237693

--

Begin PBS Prologue Fri Jan 20 15:24:46 CST 2006

Job ID: 237693.tg-master.uc.teragrid.org

Username: gustav

Group: allocate

Nodes: tg-c059 tg-c060 tg-c061 tg-c062

End PBS Prologue Fri Jan 20 15:24:48 CST 2006

--

Got 4 nodes on /var/spool/torque/aux/237693.tg-master.uc.teragrid.org:

tg-c062

tg-c061

tg-c060

tg-c059

--

Begin PBS Epilogue Fri Jan 20 15:28:34 CST 2006

Job ID: 237693.tg-master.uc.teragrid.org

Username: gustav

Group: allocate

Job Name: Example

Session: 13740

Limits: nodes=4,walltime=01:00:00

Resources: cput=00:00:00,mem=40768kb,vmem=69376kb,walltime=00:03:32

Queue: dque

Account: TG-SEC502004T

Nodes: tg-c059 tg-c060 tg-c061 tg-c062

Killing leftovers...

End PBS Epilogue Fri Jan 20 15:28:50 CST 2006

--

(tg-login2) $

When run like this (i.e., without multigridding) shapes is highly scalable. It should be possible to run
very large configurations on tens of nodes. There is usually no need to go to hundreds of nodes for 2D
problems. Of course, the generated HDF5 files may be huge and their postprocessing very difficult.

4.2 Jazz Example

The Jazz example is much the same as the University of Chicago cluster example with some small differences
because of the different locations of the parallel file system and shapes sources.

Let us look at the Jazz PBS script file, jazz_submit.sh, which lives in

/soft/apps/packages/photonic-packages/src/Shapes-2.1/doc/examples

Here is the file:

69

(jlogin2) $ cat jazz_submit.sh

#!/bin/bash

#PBS -m abe

#PBS -M gustav@indiana.edu

#PBS -l walltime=01:00:00

#PBS -l nodes=4

#PBS -A nanophotonics

#PBS -N Example

#PBS -q shared

#

cd /pvfs/scratch/meglicki

[-d Example] || mkdir Example

cd Example

cp /soft/apps/packages/photonic-packages/src/Shapes-2.1/src/pshapes.input .

NN=‘wc -l $PBS_NODEFILE | awk ’ { print $1 } ’‘

echo Got $NN nodes on $PBS_NODEFILE:

cat $PBS_NODEFILE

mpirun -np $NN -machinefile $PBS_NODEFILE \

/soft/apps/packages/photonic-packages/bin/pshapes pshapes.input

(jlogin2) $

The various PBS options are the same as in the University of Chicago example except for the account
number, which for our research group is nanophotonics. There is another option here, which right now is
commented out, namely,

#PBS -q shared

The shared queue is specially configured for testing jobs. But, if we run a job in this queue, we may
have to share resources with other users, and may end up waiting a very long time for a job to complete,
depending on what else is running on the shared nodes. But if the queue is unused—we can check the
status easily with the qstat -q command—then it is suitable for a small job. This option, like other PBS
options, can be used directly on the command line.

The location of the parallel file system on the Jazz cluster is /pvfs/scratch. The parallel shapes

wrapper, called pshapes, lives in

/soft/apps/packages/photonic-packages/bin

Here is how to submit the job:

(jlogin2) $ pwd

/soft/apps/packages/photonic-packages/src/Shapes-2.1/doc/examples

(jlogin2) $ ls

jazz_submit.sh pshapes.input shapes.input uc_submit.sh

70

(jlogin2) $ qstat -q shared

server: jmayor5.lcrc.anl.gov

Queue Memory CPU Time Walltime Node Run Que Lm State

---------------- ------ -------- -------- ---- ----- ----- ---- -----

shared -- -- -- -- 0 0 -- E R

----- -----

0 0

(jlogin2) $ qsub -q shared jazz_submit.sh

537037.jmayor5.lcrc.anl.gov

(jlogin2) $ qstat -u meglicki

jmayor5.lcrc.anl.gov:

Req’d Req’d Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

--------------- -------- -------- ---------- ------ --- --- ------ ----- - -----

537037.jmayor5. meglicki shared Example -- 4 4 -- 01:00 R --

(jlogin2) $

. . . and the job runs. As the program executes on four nodes, HDF5 files are written on PVFS:

jazz_submit.sh pshapes.input shapes.input uc_submit.sh

(jlogin2) $ ls /pvfs/scratch/meglicki/Example

fields_001.hdf5 fields_031.hdf5 fields_061.hdf5 fields_091.hdf5

fields_002.hdf5 fields_032.hdf5 fields_062.hdf5 fields_092.hdf5

...

fields_024.hdf5 fields_054.hdf5 fields_084.hdf5 pout.0

fields_025.hdf5 fields_055.hdf5 fields_085.hdf5 pout.1

fields_026.hdf5 fields_056.hdf5 fields_086.hdf5 pout.2

fields_027.hdf5 fields_057.hdf5 fields_087.hdf5 pout.3

fields_028.hdf5 fields_058.hdf5 fields_088.hdf5 pshapes.input

fields_029.hdf5 fields_059.hdf5 fields_089.hdf5

fields_030.hdf5 fields_060.hdf5 fields_090.hdf5

(jlogin2) $

Every MPI process logs its actions on its own log file called pout.? where the question mark is replaced
with the rank of the process.

After the job has completed, PBS log files will be left on the directory from which the job was submitted:

(jlogin2) $ pwd

/soft/apps/packages/photonic-packages/src/Shapes-2.1/doc/examples

(jlogin2) $ ls

Example.e537037 jazz_submit.sh shapes.input

Example.o537037 pshapes.input uc_submit.sh

(jlogin2) $

71

The Example.e537037 file should be empty in this case, unless some errors occurred during execution and
were captured by PBS. The Example.o537037 file should contain the output of the PBS script:

(jlogin2) $ cat Example.o537037

Got 4 nodes on /var/spool/PBS/aux/537037.jmayor5.lcrc.anl.gov:

j339

j340

j341

j343

(jlogin2) $

In this case the only output is the list of the Jazz nodes that the program has run on.

4.3 Working with ChomboVis on Jazz

Running the parallel shapes example job on the Jazz cluster has dumped 300 HDF5 files. There are several
ways for us to look at the data on the files. Being HDF5 files, they can be interrogated by using standard
HDF5 commands, such as h5ls or h5dump. But these will not produce images, because the way images are
formatted and distributed throughout an HDF5 file is application dependent.

To view the actual images of the fields, we need to use ChomboVis. The best way to run ChomboVis
is to run it directly on the Jazz cluster on a PBS allocated node. There is, however, a little complication
that has to do with how X11 data generated on the allocated node finds its way to the user’s X11 display.
Here is a procedure suggested by the Jazz administrators.

1. Connect to the Jazz cluster, and request a PBS node for an interactive job:

(jlogin2) $ interactive

qsub: waiting for job 537163.jmayor5.lcrc.anl.gov to start

qsub: job 537163.jmayor5.lcrc.anl.gov ready

(j26) $ echo $DISPLAY

(j26) $

We’ve done this many times before, but here we see that the DISPLAY variable hasn’t been transferred
from the Jazz front end node, and, more important, a socket for the X11 communication hasn’t been
made. The reason is that the PBS shell is not spawned via a normal ssh login that would have done
this. But there is a remedy.

2. Create another window on the X11 workstation and connect within it to the Jazz front-end node.
Now two processes are running on the Jazz front end nodes.

Having done this, within this other window, slogin to the node that’s been allocated by PBS:

(jlogin2) $ slogin j26

--

Notice to Users

72

...

is feral. Do not feed.

--

(j26) $ echo $DISPLAY

localhost:10.0

(j26) $

Now we have the DISPLAY variable, and the socket has been made, too. This is easy to check by
running, say, xclock:

(j26) $ xclock

The clock face should now appear on the X11 display. Let’s kill it, and let us invoke ChomboVis.

But first we have to define a WWW browser for ChomboVis to display its documentation.

(j26) $ export WWW_BROWSER=/soft/apps/packages/photonic-packages/bin/firefox

(j26) $

Now we are ready to run ChomboVis itself:

(j26) $ /soft/apps/packages/photonic-packages/bin/chombovis

After some prolonged hesitation, a ChomboVis window should appear on the user X11 display.
It may be a good idea to add

/soft/apps/packages/photonic-packages/bin

to the command search path and to add WWW_BROWSER to the environment. (Also, see the note on page 27
about managing the environment with the .soft file.)

Pressing the help button in the upper right corner of the ChomboVis window unfolds a small menu.
To read the ChomboVis manual on-line we could select Documentation.

But here let us simply display our first field image. Pressing on the File button in the upper left corner
of the ChomboVis window will unfold a menu. We select Load hdf5. This should bring up a directory
browser window such as that shown in Figure 13. The way to move through the directory tree using the
window is much the same on all systems: we click on this and that until we get to where we want to be.
And here we want to be where the data is, which is

/pvfs/scratch/meglicki/Example

Once there, the HDF5 files, fields_001.hdf5 through fields_300.hdf5 should be listed in the window.
Let us click on fields_150.hdf5 and press the Open button. The ChomboVis window should now resize
and we should see the border of the computational domain appear in it.

One can accomplish many a wonderous deed with ChomboVis, but we’re going to begin with something
quite unspectacular. We press on the Tools button and select Data summary from the menu. This will
bring up a window with the following text:

73

Figure 13: The ChomboVis directory browser window

Box info

level 0 : 4 boxes, 40000 data points.

All levels: 4 boxes, 40000 data points.

Domain : (0.0, 0.0, 0.0), (100.0, 100.0, 0)

Component ranges (at levels 0 through 0)

Hz (-1.3948371101104904, 1.8953029259253449)

**dx =(0.5,)

**dt =[0.125]

**time =[300.0]

We press the OK button to get rid of it.
To view the actual field, we press the Visualization button in the top menu bar of the ChomboVis

window and select Data selection. This will bring a small window that looks like that in Figure 14. In
this case, there is only one field component to choose, Hz, and there is only level 0 data. To view the field,
click on Hz in the Component field of the Data selection window. An image like the one shown in Figure
15 should reward the patient investigator.

We emphasize that it is far better to run ChomboVis directly on the Jazz cluster than to copy the
HDF5 files to the user’s workstation and then run ChomboVis on the desktop. The copy step is going to
get troubling when data files become really large, and it’s easy to run out of disk space on the desktop.
Running ChomboVis on the desktop is just as difficult, because compilation and installation of ChomboVis
are not easy. It is also important to understand that the really heavy part of ChomboVis is communication
with the disk and data processing, not the display itself. In both cases, it is better to do these on the PBS
allocated Jazz nodes: they can talk directly to PVFS, and they are well equipped in terms of CPUs and
memory.

74

Figure 14: The ChomboVis data selection window

In the future we plan to deploy tools for fully parallel data visualization, display, and processing. Such
tools will become more important when we switch to 3D modeling.

The color map in Figure 15, can be altered to emphasize various features of interest. The default color
map covers the whole range of Hz values for a given snapshot. To change the range, the user should click
on the Visualization button and then select Colormap in the menu that’s going to unfold. A new window
will pop up in which there are fields for Colormap max and Colormap min. These can be altered.

When generating images for an animation (about which more below) the user should adjust the color
map so that all images from various snapshots are displayed in the same, shared color map.

Another useful option is isocontours. These can be displayed on top of the image by clicking on the
Visualization button and selecting Isocontours menu entry. This brings up a window with active fields
for the number of contours, minimum and maximum, as well as various cosmetic details such as line width
and shading.

Another useful option is a generation of image files. Looking at an image in the ChomboVis window
is nice, but not much can be done with it unless we can dump it on a file, then process and include it in
a document, or combine it with other images to form animations. To do so, we click on the File button
and then select Save image entry. This will bring up another window that asks for the name of the file on
which the image is to be saved and the format. ChomboVis can save images in encapsulated Postscript,
PPM, BMP, TIFF, various VTK formats, and more. PPM is especially useful because filters exist that let
us convert PPM to just about anything else.

We now come to making movies. The obvious way would be to go through, for example, all the 300
images dumped by running shapes on the example file provided, generate a PPM image for each file
using some shared color map, run ppmtogif on each PPM file, and then collate all the GIFs into a GIF
animation by using gifsicle. This approach will work, but it is a laborious process. Luckily, we can talk
to ChomboVis using Python, and some tasks can be automated. Unfortunately, ChomboVis will crash, or
at best hang, if we try to make it do too much work, Python or no Python. The problem has something to
do with memory leak on the X11 display workstation. One can observe that as ChomboVis goes through
its motions, computing and dumping image after image, the size of the X11 server on the display system
continues to grow, until the system runs out of memory, whereupon ChomboVis will crash.

An obvious architectural deficiency exists in the image-processing system here. The way it works under �
ChomboVis is that the latter makes VTK draw an image on the X11 display. Then VTK utilities are
invoked to read the image back from the display and convert it to something else, for example, a PPM

75

Figure 15: ChomboVis image of the Hz field for t = 300.

file. This approach is extremely inefficient. The right way would be to read the data from an HDF5 file,
preferably in parallel, calculate an image in memory, preferably in parallel, and dump it on a PPM file ,
preferably in parallel, all without ever having to go to any displays.

Alas, the way tools like ChomboVis and VTK are put together is by scavenging existing functionality
here and there rather than doing a clean (and simple) job from scratch.

Be it as it may, we have a couple of shell/Python scripts that can help us automate the task of
generating PPM images from HDF5 files. The first such script is dump_ppms.pysh. This script takes five
command-line arguments: (1) the name of the field for which the animation is to be made, for example,
Ex, (2) and (3) minimum and maximum values against which the shared color map is to be scaled, for
example, −1.9 and 1.9—these can be read from a log file dumped by shapes during execution; (4) and
(5) x-size and y-size of each image in pixels, for example, 400 and 400. Given this input, dump_ppms.pysh
(which is a shell script) will generate a Python script for each HDF5 file in its working directory and will
invoke ChomboVis on the script. Because of this schizophrenic nature of the original script (a shell script
that writes and executes a Python script), the extension on the script itself is .pysh.

Because the script invokes ChomboVis, it should be run the same way as ChomboVis itself, that is, we
have to get an interactive node allocated to the job by PBS, then we have to slogin to the allocated node
via a Jazz front end node from another window to establish the X11 communication links; and then we
should change to the data directory and start the script; for example,

(jlogin2) $ slogin j183

--

Notice to Users

...

76

Refreshments will be served on the lawn in front of the archbishop’s

residence.

--

(j183) $ echo $DISPLAY

localhost:11.0

(j183) $ cd /pvfs/scratch/meglicki/Example

(j183) $ export PATH=/soft/apps/packages/photonic-packages/bin:$PATH

(j183) $ dump_ppms.pysh Hz -1.9 1.9 400 400

As the script executes, ChomboVis will write responses to various Python commands on standard output,
for example,

setpgid():: Operation not permitted

>>> ChomboVis:

>>> >>> >>> >>> >>> Loading fields_093.hdf5

>>> >>> >>> >>> Setting VisibleLevelMin to 0

>>> Setting VisibleLevelMax to 0

>>> >>> >>> Loading Hz

>>> >>> >>> Setting CmappedRangeMax to 1.9

>>> Setting CmappedRangeMin to -1.9

>>> >>> >>> Writing Hz_093.ppm

>>> >>> Done with fields_093.hdf5

>>>

/soft/apps/packages/photonic-packages/bin/chombovis: \

line 149: kill: (12702) - No such process

-rw-r--r-- 1 meglicki collab 480063 Jan 24 2006 Hz_093.ppm

The occasional error messages about setpgid() or “No such process” derive from the clumsiness of the
tools deployed and can be ignored. When the actual image has been built, just prior to its dumping on
the PPM file, it will be briefly flashed on the display. It is theoretically possible to run this job without
the flashing, by using MangledMesa’s blind buffer, but it doesn’t seem to work.

The whole conversion process takes about half a minute per image. So, if we have 300 images to convert,
we should reserve about two and a half hours for the job. It is best not to work with the desktop while
ChomboVis uses it for drawing and reading images, as this may accidentally corrupt the process, which
may then have to be restarted manually.

Once we have the PPM images, the next step is to convert them to PNG images, which then can be
converted to GD2 and GIF images and loaded into an animated GIF file with gifsicle.

To convert PPM files to PNG files, we need simply run the following:

(j183) $ for i in *.ppm

> do

> pnmtopng $i > ‘basename $i .ppm‘.png

> done

(j183) $

77

and finally

(j183) $ pngtomovie.sh

Hz_001.png to ... Hz_001.gd2

Hz_002.png to ... Hz_002.gd2

Hz_003.png to ... Hz_003.gd2

...

Hz_298.gd2 to ... Hz_298.gif

Hz_299.gd2 to ... Hz_299.gif

Hz_300.gd2 to ... Hz_300.gif

-rw-r--r-- 1 meglicki collab 5063168 Jan 24 2006 Hz_movie.gif

(j183) $

Now we can view the animation with gifview, but only if we have the X11 socket on the node and if the
network is fast enough:

(j183) $ echo $DISPLAY

localhost:10.0

(j183) $ gifview --animate Hz_movie.gif

This animation can be downloaded from our nanophotonics Wiki. Initially not much happens—remember
that we’re sending here a parabolic chirp in a Gaussian envelope into two boxes, one filled with a Drude-
Lorentz metal and the other filled with a pure Drude only. Both boxes have the same ε∞, which is different
from 1, meaning that various dielectric effects, such as internal reflections, are going to be observable in the
simulation, too. The first portion of the animation (long) just shows the tail of the signal envelope, so not
much happens. Eventually we get to see the signal getting stronger as it enters the domain. Its propagation
through both boxes is initially identical, because the wavelength is long. But as the wavelength gets shorter,
the box on the right becomes transparent. Then the wavelength becomes longer again, and only the short-
wavelength signal is still propagating within the right box.

To learn more about ChomboVis, shapes users should explore it on their own, perhaps using other
examples in this guide. This manual is intended to provide the reader with starting points.

5 Working with Multigrid

In this section we demonstrate simple uses of multigrid in order to give the reader some feel for this
technique. We begin with a sequential example without media; specifically, we are going to propagate an
electromagnetic signal on three levels of resolution. This is an important test because we can see noise
problems without complicating the matters additionally with the presence of the media.

5.1 A Simple Example without Media

The shapes input file for our example is shapes-3l-nomedia.input, and it lives in the

Shapes-2.1/doc/examples

78

directory in the photonic-packages source directory. This file is similar to the shapes.input file, which
we worked with before, with a small number of important differences.

First, here we have reduced level0.nx and level0.ny from 200 to 100 and increased level0.delta_x

and level0.delta_y from 0.5 to 1. In other words the level 0 grid is now 100× 100 and ∆x0 = ∆y0 = 1.
Second, we have changed iterate.level0.stride from 4 to 16. Here is the reason. Since we are going

to run this job using a synchronized unistep (iterate.use_substep is set to 0), we have to adjust the
length of our time step to that required by the finest grid. We are going to have three levels in the system.
If the level 0 stride is 16, then the effective level 2 stride will be 16/2/2 = 4, which is acceptable for level 2.
Because we are now going to make 16 level 0 time steps for the wave front to move by one level 0 grid
spacing, we are going to increase the total number of time steps to 16,000. We are still going to dump the
images every 16× 2 time steps, and the image frequency remains unchanged, so that this will give us 500
images.

Because now ∆x0 = ∆y0 = 1 and ∆t0 = 1/16, the total elapsed time for the model is going to be
16, 000 × 1/16 = 1, 000.

The signal to be injected into the total field region is now of type 3, which is a tanh ramped harmonic
wave of length λ = 40. In time ∆t = 1, 000 we could push 25 lambdas through the computational domain.
But then we have a signal delay t0 = 200, so there will be only about 20 lambdas in the train, with some
additional lambdas of a smaller amplitude as the signal enters the total field region. The ramp coefficient
α is 0.02.

We do not change the media definition, but we have set the number of boxes to 0, so that there is no
metal within the total field region.

The next change is that we activate tag.on_location and specify a single tag box:

tag.boxes.number = 1

tag.boxes.x_lo = 40

tag.boxes.y_lo = 40

tag.boxes.x_hi = 60

tag.boxes.y_hi = 60

All subgridding will take place within this box. Finally, we change refine.max_size to 100.
We now get to run shapes on this file:

(jlogin2) $ interactive

qsub: waiting for job 537648.jmayor5.lcrc.anl.gov to start

qsub: job 537648.jmayor5.lcrc.anl.gov ready

(j286) $ cd /pvfs/scratch/meglicki

(j286) $ mkdir Multigrid

(j286) $ cd Multigrid

(j286) $ cp /soft/apps/packages/photonic-packages/src\

/Shapes-2.1/doc/examples/shapes-3l-nomedia.input .

(j286) $ shapes shapes-3l-nomedia.input

@Id: shapes.cpp,v 2.0 2006/01/11 15:20:00 gustav Exp @

@Id: shapes.h,v 2.0 2006/01/11 15:24:10 gustav Exp @

@Id: io.cpp,v 2.0 2006/01/11 15:18:01 gustav Exp @

@Id: levels.cpp,v 2.0 2006/01/11 15:18:35 gustav Exp @

79

@Id: update.f,v 2.0 2006/01/11 15:22:21 gustav Exp @

Program developed by Zdzislaw (Gustav) Meglicki, Indiana University

print_level: my_level = 0

levels[0]->domain = Box (0,0) to (99,99) type [(0,0)]

levels[0]->x0 = 0, levels[0]->y0 = 0

levels[0]->delta_x = 1, levels[0]->delta_y = 1

levels[0]->imin = 0, levels[0]->imax = 99

levels[0]->jmin = 0, levels[0]->jmax = 99

levels[0]->xmin = 0, levels[0]->xmax = 99

levels[0]->ymin = 0, levels[0]->ymax = 99

levels[0]->time_e = 0, levels[0]->time_e_old = -0.0625

levels[0]->time_h = 0.03125, levels[0]->time_h_old = -0.03125

levels[0]->delta_t = 0.0625

...............print_level: my_level = 1

levels[1]->domain = Box (0,0) to (199,199) type [(0,0)]

levels[1]->x0 = -0.25, levels[1]->y0 = -0.25

levels[1]->delta_x = 0.5, levels[1]->delta_y = 0.5

levels[1]->imin = 80, levels[1]->imax = 121

levels[1]->jmin = 80, levels[1]->jmax = 121

levels[1]->xmin = 39.75, levels[1]->xmax = 60.25

levels[1]->ymin = 39.75, levels[1]->ymax = 60.25

levels[1]->time_e = 1, levels[1]->time_e_old = 0.9375

levels[1]->time_h = 1.03125, levels[1]->time_h_old = 0.96875

levels[1]->delta_t = 0.0625

................print_level: my_level = 2

levels[2]->domain = Box (0,0) to (399,399) type [(0,0)]

levels[2]->x0 = -0.375, levels[2]->y0 = -0.375

levels[2]->delta_x = 0.25, levels[2]->delta_y = 0.25

levels[2]->imin = 176, levels[2]->imax = 227

levels[2]->jmin = 176, levels[2]->jmax = 227

levels[2]->xmin = 43.625, levels[2]->xmax = 56.375

levels[2]->ymin = 43.625, levels[2]->ymax = 56.375

levels[2]->time_e = 2, levels[2]->time_e_old = 1.9375

levels[2]->time_h = 2.03125, levels[2]->time_h_old = 1.96875

levels[2]->delta_t = 0.0625

...

As the program runs, it prints minima and maxima for all three levels.

analyze_levels, level = 0, time_e = 68, time_h = 68.0312

Dx_min = -0.00116738, -0.00119601

Dx_max = 0.00205831, 0.00205831

Dy_min = -6.8972e-05, -6.8972e-05

Dy_max = 6.89347e-05, 6.89347e-05

Ex_min = -0.00116738, -0.00119601

Ex_max = 0.00205831, 0.00205831

80

Ey_min = -6.8972e-05, -6.8972e-05

Ey_max = 6.89347e-05, 6.89347e-05

Hz_min = -0.00218326, -0.00218326

Hz_max = 0.00114685, 0.00115078

Energy_min = 0, 0

Energy_max = 3.80236e-06, 3.80236e-06

analyze_levels, level = 1, time_e = 68, time_h = 68.0312

Dx_min = -0.00109205, -0.00109205

Dx_max = 0.000516083, 0.000516283

Dy_min = -7.06292e-06, -3.37833e-05

Dy_max = 7.07905e-06, 3.37833e-05

Ex_min = -0.00109205, -0.00109205

Ex_max = 0.000516083, 0.000516283

Ey_min = -7.06292e-06, -3.37833e-05

Ey_max = 7.07905e-06, 3.37833e-05

Hz_min = -0.000521339, -0.000526604

Hz_max = 0.00103652, 0.00103652

Energy_min = 2.48711e-11, 0

Energy_max = 1.07445e-06, 1.07445e-06

analyze_levels, level = 2, time_e = 68, time_h = 68.0312

Dx_min = -0.000646361, -0.000646361

Dx_max = 0.000514659, 0.000514763

Dy_min = -4.5556e-06, -3.38075e-05

Dy_max = 4.54462e-06, 3.38075e-05

Ex_min = -0.000646361, -0.000646361

Ex_max = 0.000514659, 0.000514763

Ey_min = -4.5556e-06, -3.38075e-05

Ey_max = 4.54462e-06, 3.38075e-05

Hz_min = -0.000521052, -0.000522457

Hz_max = 0.000595156, 0.000595156

Energy_min = 1.33697e-10, 0

Energy_max = 3.53126e-07, 3.53126e-07

...

A look at the data directory from another window on the Jazz front end shows that the working directory
is beginning to fill with data files for three levels:

(jlogin2) $ ls Hz_?_00[1-4].dat

Hz_0_001.dat Hz_0_004.dat Hz_1_003.dat Hz_2_002.dat

Hz_0_002.dat Hz_1_001.dat Hz_1_004.dat Hz_2_003.dat

Hz_0_003.dat Hz_1_002.dat Hz_2_001.dat Hz_2_004.dat

(jlogin2) $

The job runs fairly fast, generating about 30 three-level snapshots per minute. The sizes of the snapshot
data files are as follows:

81

(jlogin2) $ ls -l Hz_?_209.dat

-rw-r--r-- 1 meglicki collab 304039 Jan 26 16:21 Hz_0_209.dat

-rw-r--r-- 1 meglicki collab 58411 Jan 26 16:21 Hz_1_209.dat

-rw-r--r-- 1 meglicki collab 86842 Jan 26 16:21 Hz_2_209.dat

(jlogin2) $

Let us look at the header of a data file dumped for level 2:

program: shapes, function: write_gnuplot_data

header:

program author: Zdzislaw (Gustav) Meglicki, Indiana University

@Id: shapes.cpp,v 2.0 2006/01/11 15:20:00 gustav Exp @

@Id: shapes.h,v 2.0 2006/01/11 15:24:10 gustav Exp @

@Id: levels.cpp,v 2.0 2006/01/11 15:18:35 gustav Exp @

@Id: io.cpp,v 2.0 2006/01/11 15:18:01 gustav Exp @

@Id: update.f,v 2.0 2006/01/11 15:22:21 gustav Exp @

system kernel: Linux.2.4.29-rc2.#1 SMP Mon Jan 31 10:17:39 CST 2005

machine: i686

node: j286

time of dump: Thu Jan 26 16:21:07 2006

Signal injection group:

x_lo: 20.000000

y_lo: 20.000000

x_hi: 80.000000

y_hi: 80.000000

mode: 3 (tanh ramped harmonic wave)

t0: 200.000000

lambda: 40.000000

sigma: 0.000000

alpha: 0.020000

beta: 0.000000

vx: 0.000000

vy: 1.000000

Media group:

medium 1:

epsilon_infty: 2.364610

alpha: 0.000000 1.000000 1.000000

omega: 0.662850 0.332290 0.393180

delta: 0.004290 0.063930 0.105760

epsilon: 1.000000 0.315040 0.868050

medium 2:

epsilon_infty: 2.364610

alpha: 0.000000 0.000000 0.000000

omega: 0.662850 0.000000 0.000000

delta: 0.004290 0.000000 0.000000

82

epsilon: 1.000000 0.000000 0.000000

Data group:

data for: Hz

level: 2

label: 209

time_e: 418.000000

time_h: 418.031250

delta_t: 0.062500

delta_t_0: 0.062500

xmin: 43.625000

xmin_0: 0.000000

xmax: 56.375000

xmax_0: 99.000000

ymin: 43.625000

ymin_0: 0.000000

ymax: 56.375000

ymax_0: 99.000000

delta_x: 0.250000

delta_x_0: 1.000000

delta_y: 0.250000

delta_y_0: 1.000000

data minimum: -0.999211

global minimum: -0.999774

data maximum: -0.210539

global maximum: 1.000131

data:

x: y: Hz:

43.375 43.375 -0.74798

43.625 43.375 -0.74697

43.875 43.375 -0.74653

...

There is a good deal of information here. We find about the exact version of sources used in the compilation
of the binary, about the kernel of the node the job has run on, and about which node it was. The time of
the dump is here, then all the information about the signal injected into the computational domain. We
get not only the signal number but also what this signal actually is. We have two media defined but not
distributed. Then we get to the actual data, and we learn that level 2 in this case is confined to a box
defined by (xlo, ylo) = (43, 625, 43, 625) and (xhi, yhi) = (56.375, 56.375). We can see that ∆x = ∆y = 0.25
for this level and that ∆t = 0.0625. Last, we get information about the minimum and the maximum values
of the field, Hz, on this file and throughout the whole simulation so far (global minimum and maximum).

The program should complete the execution within less than 20 minutes. Let us look at some of the
data generated by shapes in this run. From another Jazz window we login on the PBS allocated node:

(jlogin2) $ slogin j286

Notice to Users

83

...

defamatory material but not child pornography.

(j286) $ (j286) $ echo $DISPLAY

localhost:10.0

(j286) $ (j286) $ cd /pvfs/scratch/meglicki/Multigrid

(j286) $ gnuplot

G N U P L O T

Version 4.0 patchlevel 0

last modified Thu Apr 15 14:44:22 CEST 2004

System: Linux 2.4.29-rc2

...

Terminal type set to ’x11’

gnuplot> set xrange[35:65]

gnuplot> set yrange[35:65]

gnuplot> splot "Hz_0_450.dat" with lines, \

> "Hz_1_450.dat" with lines, \

> "Hz_2_450.dat" with lines

gnuplot>

This brings up a plot showing data for all three levels interposed on top of each other. We can rotate
the plot by dragging on it with a mouse to get a better view. To dump the figure on a Postscript file for
inclusion in this very document, we first change the terminal to postscript:

gnuplot> set terminal postscript eps colour

Terminal type set to ’postscript’

Options are ’eps noenhanced color colortext \

dashed dashlength 1.0 linewidth 1.0 defaultplex \

palfuncparam 2000,0.003 \

butt "Helvetica" 14’

gnuplot>

Then we specify the output file and replot the data:

gnuplot> set output "Hz_450.eps"

gnuplot> replot

gnuplot>

The resulting picture is shown in Figure 16. It is a good idea to zoom on a corner where the three levels
can be seen in closeup.

84

 35

 40

 45

 50

 55

 60

 65 35 40 45 50 55 60 65

-1.2
-1

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

"Hz_0_450.dat"
"Hz_1_450.dat"
"Hz_2_450.dat"

Figure 16: Hz at t = 900 for the tanh ramped harmonic wave. All three levels are shown.

gnuplot> set terminal x11

Terminal type set to ’x11’

Options are ’0’

gnuplot> set view 45,75,1.5,1

gnuplot> replot

gnuplot>

Figure 17 shows that the data for all three levels overlaps closely. This can be seen even better by looking
at the graph from the side.

gnuplot> set xrange[20:80]

gnuplot> set yrange[20:80]

gnuplot> set view 90,90,1,1

gnuplot> replot

gnuplot>

Figure 18 shows a profile for the tanh ramped harmonic wave. The thinner the line, the less the noise.
Also, if there had been any deviation between the levels, we would have noticed it here. Further, if signal
propagation had been incorrect, we would have noticed it; instead we see a perfect, thinly drawn sinusoid.

One can convert the data files to GIF images and collate them to form animations. The following
simple script automates the task by invoking other scripts discussed already:

85

 40

 41

 42

 43

"Hz_0_450.dat"
"Hz_1_450.dat"
"Hz_2_450.dat"

Figure 17: Hz at t = 900 for the tanh ramped harmonic wave. All three levels are shown in closeup of a
corner.

(j286) $ cat movieize.sh

#!/bin/sh

write_gif_files.sh Hz 0 > Hz_0.plt

write_gif_files.sh Hz 1 > Hz_1.plt

write_gif_files.sh Hz 2 > Hz_2.plt

gnuplot Hz_0.plt

gnuplot Hz_1.plt

gnuplot Hz_2.plt

pngtomovie.sh

(j286) $ movieize.sh

...

The result of running this script can be seen on our nanophotonics Wiki.

5.2 A Classic Example in Parallel

In this section we present a classic example of a Gaussian wave packet scattering on a metal cylinder. To
illustrate the use of the multigrid technique, we scatter the packet on a very narrow cylinder.

The input file used in this simulation is Cylinder-5.inputwhich is in the same Shapes-2.1/doc/examples
directory in the photonic-packages area on the Jazz cluster as all the other examples discussed in this
guide.

The incident signal is number 5, a harmonic wave in a Gaussian envelope, with λ equal 20 and σ,
the half width of the Gaussian envelope, equal 60. We inject the signal with the delay t0 of 300 and we

86

 20 30 40 50 60 70 80 20 30 40 50 60 70 80

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

"Hz_0_450.dat"
"Hz_1_450.dat"
"Hz_2_450.dat"

Figure 18: Hz at t = 900 for the tanh ramped harmonic wave. All three levels are shown in profile.

propagate the signal for ∆t = 650. These parameters guarantee that the whole total field region is quiescent
at the beginning and at the end of the simulation. The signal is shown in Figure 19.

The total field region is visibly smaller than the whole computational domain. We define it by

signal.x_lo = 30

signal.y_lo = 30

signal.x_hi = 70

signal.y_hi = 70

This leaves a wide scattered field region, which lets us observe the scattered field.
The cylinder is defined as a circle of radius rc = 1.25 centered on (xc, yc) = (50, 50). The diameter

of the cylinder, 2.5, is sub-λ. If λ was, say, 5000 Å, then the diameter of the cylinder would be 625 Å or
62.5 nm.

We might as well have some other devices within the computational domain, the size of which would
be more comparable to λ. If we were to simulate both the devices and scattering on the cylinder, we would
have to use very high resolution everywhere or at least sufficiently high resolution in the cylinder region,
so as to resolve the cylinder and the field scattered on it.

Setting up the problem requires tinkering with the multigrid layout to ensure that the actual object is
well covered. Some of the work may be done by using the sequential version of shapes, but HDF5 output
should be turned on so that we can look at the actual grids. To view the object against the grids, we turn
on output.Distrib_Dx and output.Distrib_Dy and run the program just long enough for all the levels
to be created and dumped on an HDF5 file.

It may also happen that, as we try to come up with an appropriate multigrid, the job hangs—especially �

87

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-300 -200 -100 0 100 200 300

f(z)

Figure 19: The Gaussian envelope wave packet (signal #5) with λ = 20 and σ = 60.

when run in parallel. The remedy is to run the DEBUG version of the code, invoked as pshapes.DEBUG (or
shapes.DEBUG in the sequential version). The DEBUG code should not hang. Instead it should print various
messages that may help diagnose the problem.

The multigrid and metal distribution settings used in the simulation are as follows.

metal.cylinders.number = 1

metal.cylinders.xc = 50

metal.cylinders.yc = 50

metal.cylinders.rc = 1.25

metal.cylinders.medium = 1

...

tag.max_number_of_levels = 5

...

tag.boxes.number = 1

tag.boxes.x_lo = 44

tag.boxes.y_lo = 44

tag.boxes.x_hi = 56

tag.boxes.y_hi = 56

...

refine.fill_ratio = 1.0

refine.block_factor = 2

refine.buffer_size = 16

88

refine.max_size = 50

...

Figure 20 illustrates the geometry of the computational domain. The cylinder is represented by the
little circle in the center. It is enclosed within the tag box, which is, in turn, enclosed within the total
field region box. The scattered field region around it is wide. Eventually we get to the PML boundary and
finally the boundary of the computational domain.

Figure 20: Definition of various regions in the simulation. The innermost box is the tag region, the next
box from the center is the total field region. Then we have the PML boundary and finally the boundary of
the computational domain. The circle in the center represents the cylinder. All objects are drawn to scale.

The level 0 grid is 400× 400:

level0.nx = 400

level0.ny = 400

level0.nbx = 2

level0.x0 = 0

level0.y0 = 0

level0.delta_x = 0.25

level0.delta_y = 0.25

and the iteration is carried out by using a synchronized unistep with level 0 stride of 64.

89

iterate.level0.stride = 64

iterate.level0.image_frequency = 20

iterate.level0.number_of_steps = 166400

iterate.use_substep = 0

Observe that the image frequency is 20 not 2. The reason is that ∆x = ∆y = 0.25 instead of 1, as we had
in some of the previous examples, and because we want to generate fewer images this time—130 total. The
wave front is therefore going to move by 5 units of length between the snapshots.

Making 166,400 time steps at 64 steps per grid cell and 4 cells per unit of length will advance the
system through 650 units of time (remembering that c = 1, and δt = δx).

The resulting level 0 grid will be subdivided into four boxes. So will, as it turns out, level 1. We can
see this by looking at the Data summary for an HDF5 file dumped by a short test run with ChomboVis:

Box info

level 0 : 4 boxes, 160000 data points.

level 1 : 4 boxes, 9604 data points.

level 2 : 16 boxes, 17424 data points.

level 3 : 16 boxes, 40000 data points.

level 4 : 64 boxes, 112896 data points.

All levels: 104 boxes, 339924 data points.

Domain : (0.0, 0.0, 0.0), (100.0, 100.0, 0)

Component ranges (at levels 4 through 4)

Ex (-3.7000376853163741e-313, 8.7373756052750643e-314)

Ey (-1.6072595588452865e-313, 1.6072595588452865e-313)

Hz (-1.6737210128073414e-314, 2.9344187557448877e-313)

Energy (0.0, 0.0)

Distrib_Dx (0.0, 1.0)

Distrib_Dy (0.0, 1.0)

**dx =(0.25, 0.125, 0.0625, 0.03125, 0.015625)

**dt =[0.00390625, 0.001953125, 0.0009765625, 0.00048828125, 0.000244140625]

**time =[1.5, 1.5, 1.5, 1.5, 1.5]

We also find that levels 2 and 3 are each covered by 16 boxes and that level 4 is covered by 64 boxes.
These numbers suggest that we could run the job on 4 CPUs. Then each CPU would get one level 0 box,
one level 1 box, four level 2 boxes, four level 3 boxes and sixteen level 4 boxes, and the division of labor
would be equitable.

The information that ChomboVis gives us about the time step for each level, **dt, is incorrect, because �
the Chombo function that dumps data makes certain assumptions here, which are not, in our case, valid.
At some stage we will have to write our own HDF5 data dumping function, or overload Chombo methods
with some shapes specific modifications.

The time step for all levels is ∆t0 = 0.00390625 = 0.25/2/2/2/2/4. In other words, the finest level,
which is level 4, is going to make four time steps in order to advance the wave front across one level 4 grid
cell.

Figure 21 shows how the cylinder is resolved at various levels, beginning with level 0 on the left through
level 4 on the right.

90

Figure 21: Resolving the cylinder at 5 levels.

Figure 22: Multigrids for successive levels and how they nest. The leftmost panel shows the four level 0 grid
boxes with higher-levels grid boxes concentrated in the center. The next panel zooms on the four level 1
grid boxes with higher-level grid boxes nested within it, and so on until we zoom on the level 4 grid boxes
in the rightmost panel.

Figure 22 illustrates nesting of grids: higher-level grids nest within the lower-level ones. Here only the
boxes into which Chombo divides the grid cells are drawn.

The job file for this run, Cylinder-5.sh, looks as follows:

(jlogin2) $ cat Cylinder-5.sh

#!/bin/bash

#PBS -m abe

#PBS -M gustav@indiana.edu

#PBS -l walltime=48:00:00

#PBS -l nodes=4

#PBS -A nanophotonics

#PBS -N Cylinder-5

#PBS -q shared

#

Editable part of the script

#

MODEL=Cylinder-5

#

Leave unchanged

#

PHOTONIC_PACKAGES=/soft/apps/packages/photonic-packages

PVFS_SPACE=/pvfs/scratch/meglicki

JOB_DIR=${MODEL}

INPUT_FILE=${MODEL}.input

91

JOB_FILE=${MODEL}.sh

#

Action

#

cd $PVFS_SPACE

[-d $JOB_DIR] || mkdir $JOB_DIR

cd $JOB_DIR

cp $PHOTONIC_PACKAGES/src/Shapes-2.1/doc/examples/$INPUT_FILE .

cp $PHOTONIC_PACKAGES/src/Shapes-2.1/doc/examples/$JOB_FILE .

NN=‘wc -l $PBS_NODEFILE | awk ’ { print $1 } ’‘

echo Got $NN nodes on $PBS_NODEFILE:

cat $PBS_NODEFILE

mpirun -np $NN -machinefile $PBS_NODEFILE \

$PHOTONIC_PACKAGES/bin/pshapes-2.1 $INPUT_FILE

(jlogin2) $

The job file can be found in the examples directory of the shapes source (version 2.1). Observe that we
copy the job file to the run directory. It is a matter of record keeping—we want to save not only the input
to shapes but also the PBS file that was used to run the job. Otherwise the script is much the same as
before, with the difference that this time we ask for 48 hours of wall-clock time. This turns out to be a little
too much, because the job completed in 15 hours and 3 minutes, dumping a snapshot every 7 minutes. But
since shapes does not provide checkpoint and resubmit functionality at this stage, it is better to request
more time than not enough. Because neither Jazz nor the University of Chicago cluster limit job durations,
asking for extra time has not been a problem so far. But checkpoint and resubmit will be added to shapes

eventually.
Each HDF5 data file is slightly more than 28.5MB. This is not much as per a single snapshot. Still,

130 of these add up to 3.7GB, so it is better to keep them and to process them on the Jazz PVFS rather
than move around.

We request the following field dumps: Ex, Êx, Ey, Êy, E =
√

E2
x + E2

y , Ê, Hz, Ĥz, E =
(

E2
x + E2

y + H2
z

)

/2

and Ê , where the hatted quantities are Fourier accumulations (spectral responses). We request spectral
response at one frequency, ω0 = 2×2π/λ = 2×2π/20 = 2×π/10 = 0.62831853, remembering that because
c = 1 we have that λ = T , where T is the period of vibration of a point through which the wave traverses.
Consequently, 2π/λ = 2π/T is the angular frequency of the wave. We request spectral response at 2×2π/λ
instead of 2π/λ because both the energy density E and the electric field strength E fluctuate with twice
the frequency of the incident signal.

Some of the quantities specified above are computed on demand only. Requesting so many of them �
increases the computation time. Fourier accumulations and E are especially expensive, because sin, cos,
atan, and square root are CPU-intensive functions that have to be called for every grid point and at every
level 0 time step.

Let us look at some of the snapshots produced by the run. As before, we request an interactive job in
a Jazz window.

(jlogin2) $ interactive

qsub: waiting for job 537912.jmayor5.lcrc.anl.gov to start

qsub: job 537912.jmayor5.lcrc.anl.gov ready

(j57) $

92

Then we slogin to the allocated node in another Jazz window.

(jlogin2) $ slogin j57

Notice to Users

...

horrible deformations.

(j57) $

We change to the run directory and look at the data with ChomboVis.

(j57) $ cd /pvfs/scratch/meglicki/Cylinder-5

(j57) $ chombovis &

[1] 25347

(j57) $

After a little while the ChomboVis window appears on the display. We press on the File button and select
Load hdf5 in the menu that unfolds. Then in the Open window, we find fields_065.hdf5 and double
click on it.

The snapshot corresponds to the middle of the Gaussian packet passing through the center of the total
field region at t = 325, which is where the cylinder is.

The ChomboVis window goes through a bout of hysterics, but calms down after a few seconds, and
we see the border of the computational domain in it. We press on the Visualization button and select
Data selection. The popup window should look as before, but this time there are more choices in the
Component window. We see the following:

Ex

Ey

E

Hz

E amplitude @ 0.628319

E phase @ 0.628319

Hz amplitude @ 0.628319

Hz phase @ 0.628319

En amplitude @ 0.628319

En phase @ 0.628319

The En phase and amplitude images display Fourier accumulations for the energy density.
We also have more levels. To see them, the user should drag the max scroll bar all the way to the right.

The number above the scroll bar should change to 4. To view an image of the Ex field, the user should click

93

Figure 23: ChomboVis images of the Ex field for the 5 level run for t = 325. The leftmost panel shows the
whole computational domain with the wave itself visible in the total field region. The center panel shows
the magnified image of the Ex field in the center of the computational domain. The rightmost panel shows
the field in the scattered field region. To see the field in the scattered field region, the colormap had to be
adjusted. This resulted in the blotting out of the total field region.

on Ex. An image should appear similar to the one shown in the leftmost panel of Figure 23. We can zoom
on the cylinder by pressing the right button on the mouse and dragging it down across the ChomboVis
window. We can also change the colormap by selecting Colormap from the Visualization menu. The
default colormap associates red with the lowest value of Ex, which is −1.49064, and dark blue with the
highest value of Ex, which is 0.973031. These values often correspond to the spikes on the periphery of the
cylinder. To identify the spikes, we can raise the colormap minimum to, say, −1.3, while requesting that
ChomboVis should black the outliers at the same time. This results in two small black blots on both sides
of the cylinder. To get rid of the blots we lower the colormap minimum a little, for example, to −1.4, then
still a little more, say, to −1.44. The blots become isolated dots located on the cylinder circumference. The
new maximum of −1.44 is close to the original maximum of −1.49, which proves that the spikes are small.
This is a well known and desirable side-effect of improved resolution. Although stair-case spikes never go
away, they become smaller as resolution improves.

We can draw isocontours on the image by selecting Isocontours from the Visualization menu.
The number of isocontours can be changed from the default 10 to another value. We can also reset
the minimum and maximum values between which the isocontours are drawn, but these have to remain
within the absolute minimum and maximum for the data set. Finally, to see the isocontours, we press the
Make visible button in the Isocontours window. The central panel in Figure 23 shows the magnified
image of the Ex field around and inside the cylinder with isocontours. The solution looks smooth. There
is no visible noise other than that due to the stair-case spikes.

To observe the scattered field, we zoom out, so as to get the view of the whole computational domain.
We lower the colormap thresholds to −0.055 and 0.055, and blot the total field region by asking for the
outliers to be blacked out. We add isocontours to the picture, and the resulting scattered field image is
shown in the rightmost panel of Figure 23.

Figures 24 and 25 show similarly produced images of Ey and Hz in the high resolution region and in
the scattered field region.

Although this simulation runs to t = 650 only, we have run similar 5-level simulations to t = 1000
without observing noise. t = 650 corresponds to a wave train 32.5 lambdas long.

The purpose of this simulation was to evaluate spectral response of the system at ω0 = 0.62831853. To
look at the spectral response, we select a late snapshot that corresponds to the system in the quiescent

94

Figure 24: Fields Ey and Hz for the 5-level run for t = 325 in the high resolution region.

state, long after the wave packet has passed. We select data file number 130, the last one dumped.
Figure 26 shows the Ê amplitude field at t = 650 in the high resolution region, in the total field region,

and in the scattered field region. The wiggly topology of the Ê amplitude field in the scattered field region
suggests concentric rings underneath, and this is indeed the case as illustrated by Figure 27 that depicts
the Ê phase field in the high resolution region and in the scattered field region.

How much do we save by running this example in multigrid, rather than in the target resolution covering
the whole region?

The target resolution is very high. The ∆x0 = 0.25 is refined 4 times down to ∆x4 = ∆x0/2/2/2/2 =
0.25/16 = 0.015625. At this resolution the 100 δl × 100 δl region would be covered by 6, 400 × 6, 400 grid
cells, which is more than 40 million cells. This would be a very large problem, and it would no longer fit in
the memory of four nodes. When run on sixteen nodes, the program would take an hour and 10 minutes
between the snapshots, instead of just 7 minutes for the 5-level simulation, and the dumped data files
would have the size of 3.36GB. One hundred and thirty of such files would fill more than 436GB of disk
space.

If the problem could somehow be executed on four nodes instead of sixteen, it would take four times
longer to run (the single level computation parallelizes well and the scalability is almost linear), that is, 4
hours and 40 minutes per snapshot. To complete the run nearly a month would be needed.

The current program is not highly optimized, but even if we managed to optimize it, say, five times,
which would be a lot, the single level configuration would still take days to complete when run on four
nodes.

But the size of the dumped data files is the worst problem. ChomboVis could not be used on data sets
3.36GB large.

Table 2 compares resources used by 5 shapes input configurations, all of which model the example
discussed in this section. The configurations and the files used to run them can be found in the shapes

examples directory.
For all configurations the computational domain is 100 δl× 100 δl, the cylinder is located in the center

and its diameter is 2.5 δl. For all multilevel configurations, the tag regions are defined in the same way. The
target resolution for all runs is the same, but in the Cylinder-5 configuration, it is reached within level 5,
as discussed above. In the Cylinder-4 configuration, we have 4 levels only and the target resolution is

95

Figure 25: Fields Ey and Hz for the 5-level run for t = 325 in the scattered field region.

Figure 26: Spectral response Ê amplitude field at t = 650 in the high resolution region, on the left, in the
total field region, in the middle, and in the scattered field region, on the right.

reached within level 4. To accomplish this, we must enlarge the level 0 grid to 800×800. Similarly, we have
to enlarge the level 0 grid for the 3-level configuration to 1600× 1600, then for the 2-level configuration to
3200 × 3200, and finally for the single-level configuration to 6400× 6400.

All runs were carried out on 4 processors. Table 2 shows that the resources are consumed exponentially
with the decreasing number of levels, that is,

• the 4 level run takes 2.4 times longer to execute than the 5 level run and the generated data files are
3.3 times larger.

• The 3 level run takes 1.8 times longer than the 4 level run and the generated data files are 2.8 times
larger.

• The 2 level run takes 2.5 times longer to execute than the 3 level run and the generated data files
are 3.4 times larger.

• The 1 level run takes 3.5 times longer to execute than the 2 level run and the generated data files

96

Figure 27: Spectral response Ê phase field at t = 650 in the high resolution region, on the left, and in the
scattered field region, on the right.

are 3.8 times larger.

Table 2: Resources consumed by cylinder runs with varying number of levels, but with a fixed target
resolution, identical physical configuration, and a fixed number of processors. Table entries from left to
right: name of configuration, number of levels, size of level 0 grid, time per snapshot and size of snapshot.

configuration # of levels nx × ny snapshot
time (min) size (MB)

Cylinder-5 5 400 × 400 7 28.55
Cylinder-4 4 800 × 800 17 94.32
Cylinder-3 3 1600 × 1600 32 269.43
Cylinder-2 2 3200 × 3200 79 909.15
Cylinder-1 1 6400 × 6400 280 3437.51

5.3 The Cost of High Resolution

Another way to look at multigrid savings is to emphasize the cost of improving resolution. The cost of
improving resolution can be exponential—improving the resolution twice in each dimension results in
increasing the number of grid points 2 × 2 = 4 times, improving the resolution twice again increases the
number of grid points 4 times again, and so on. For n such improvements, the size of the problem grows
like 4n.

Of course, this is not the only way of improving resolution. Resolution may be improved more gradually,
not by dividing each cell in half, but, for example, by switching from a 400 × 400 grid to a 500 × 500 one
for the same domain size. Such gradual improvements do not yield significant results and they cannot be
incorporated into a multigrid scheme.

When resolution is improved, exponentially, in a small patch only, the equation changes. Suppose the
computational domain is square and the small patch to be refined is square, too, and comprises Np nodes

97

in each direction. Suppose, to make the reasoning easier, that it is located in the lower left corner of the
computational domain. Then the total number of nodes in each direction is N = Np +N0, where N0 is the
number of nodes, in each direction, that is not refined. The total number of nodes in the 2D region is

(Np + N0)
2 = N2

p + 2NpN0 + N2
0 .

Refining the small patch replaces Np with

Np + 2Np + 2 · 2Np + 2 · 2 · 2Np + . . . = Np

n
∑

k=0

2k = Np

(

2n+1 − 1
)

.

where n is the number of levels, and where we have made use of the fact that
∑n

k=0 2k is the sum of a
geometric series. Hence, the size of the problem grows with the number of levels n as follows

(

Np

(

2n+1 − 1
))2

+ 2Np

(

2n+1 − 1
)

N0 + N2
0

= N2
0

(

1 + 2
Np

N0

(

2n+1 − 1
)

+

(

Np

N0

)2
(

2n+1 − 1
)2

)

.

For Np

(

2n+1 − 1
)

� N0 the growth in the size of the problem with n is negligible, but when Np

(

2n+1 − 1
)

approaches N0, we’re back in the original game, with its onset merely delayed and with the added burden
of having to carry out computations for all the intermediate levels.

This observation gives us a criterion regarding a good number of levels worth going for in a given
simulation. We are going to look for such n that

Np

(

2n+1 − 1
)

= N0

From this

n = log2

(

N0

Np
+ 1

)

− 1

= log2

(

N0

Np
+ 1

)

− log2 2

= log2

(

N0/Np + 1

2

)

=
1

ln 2
ln

(

N0/Np + 1

2

)

=
1

ln 2
ln

(

N

2Np

)

Consider the example discussed in Section 5.2. We had there that Np = 12 and N = 400. Using the above
formula we obtain

n =
1

ln 2
ln

(

400

2× 12

)

= 4.05889

So, our choice of the maximum level being n = 4 was fortuitous.
The above consideration ignores the added cost of communication, both within a node and between

nodes, which is very considerable for the multigrid method.
Table 3 illustrates the empirical cost of improving resolution. The configurations in the Cylinder-Xa

series of runs, where X = 1, 2, 3, 4, 5, were constructed by fixing level 0 resolution at 400 × 400 and

98

Table 3: The cost of high resolution. The multilevel runs on the left hand side of the table all start with
the same level 0 resolution of 400 × 400. The single level runs on the right hand side stretch the target
resolution that is the same as for the runs on the left hand side over the whole computational domain.

multi-level runs single level runs

configuration # of levels snapshot configuration nx × ny snapshot
time size time size

(min) (MB) (min) (MB)

Cylinder-1a 1 0.15 13.44 Cylinder-1b 400 × 400 0.15 13.44
Cylinder-2a 2 0.29 14.25 Cylinder-2b 800 × 800 0.59 53.72
Cylinder-3a 3 0.74 15.71 Cylinder-3b 1600 × 1600 4.00 214.85
Cylinder-4a 4 2.00 19.07 Cylinder-4b 3200 × 3200 34.00 852.38
Cylinder-5a 5 7.00 28.55 Cylinder-5b 6400 × 6400 280.00 3437.51

then adding levels. The target resolution achieved in these models is obviously different. It is 400 × 400
for Cylinder-1a, 800 × 800 for Cylinder-2a, and so on until we reach 6400 × 6400 for Cylinder-5a.
Similarly, the length of the time step shrinks for these models, in order to fit the stability criterion for the
finest subgrid. Otherwise the models are the same as the model discussed in Section 5.2. The snapshots
are dumped every ∆t = 5, the simulation is carried out until t = 650 and 130 snapshots are dumped
altogether. The numbers in the third column of table 3 correspond to the wait, in minutes, between
successive snapshots. This number grows somewhat faster than exponentially with the number of levels
added, but remains acceptably short, even for the 5 level run (7 minutes). Column 4 shows the size of the
snapshot in MB. Here the growth is also somewhat faster than exponential, but the size of the data file
remains reasonable even for the 5 level run.

The right hand side of Table 3 shows run times and snapshot sizes for single-level configurations, where
the target resolution was stretched to cover the whole computational domain. These configurations are
called Cylinder-Xb, where X = 1, 2, 3, 4, 5. We note that the Cylinder-1a and Cylinder-1b configura-
tions are identical, as are the Cylinder-5b configuration and the Cylinder-1 configuration from Table 2.
We observe explosive growth in the snapshot size in column 8. It is here that the cost of high resolution
becomes especially painful. The growth in the size of data is also reflected in the execution time, which
is shown in column 7. The savings provided by the multigrid method become substantial in the high
resolution regime.

The shapes input files and PBS scripts for these configurations can be found in the Shapes-2.1/doc/examples
directory.

5.4 Variations

Having developed and tested an input file for a 5-level single cylinder run, we can modify it to explore
other similar systems. We can make the cylinder radius a little larger or a little smaller, but a more
interesting change is to replace it with, for example, a ring and investigate what effect this is going to have
on scattering. This configuration corresponds to scattering on a hollow cylinder with a sub-λ diameter. A
system similar to a nano-tube.

A ring can be defined by combining a cylinder with a mask that cuts out a circle from the interior of
the cylinder. But, as we have mentioned before, this construct cannot be used to define concentric rings
or a rounded corner in a waveguide. For this reason rings have been added in version 2.1 of shapes.

We replace the cylinder in the center of the computational domain with a ring by

99

1. setting metal.cylinders.number to zero, and

2. adding the following definition:

metal.rings.number = 1

metal.rings.xc = 50

metal.rings.yc = 50

metal.rings.r_lo = 1.00

metal.rings.r_hi = 1.25

metal.rings.medium = 1

File Ring-5.input in the doc/examples directory in the shapes-2.1 source contains this exact change.
Files Ring-5.sh and URing-5.sh are the PBS scripts for submissions on the Jazz cluster and on the
University of Chicago cluster respectively.

Figure 28: Scattering on a hollow metal cylinder. From left to right: Ex, Ey, and Hz at t = 325.

Figure 28 shows the result of the computation. It turns out that such a hollow nano-cylinder scatters
light very inefficiently. The incident signal goes right through it, triggering only some interesting activity
within the walls of the cylinder, but not outside.

Another interesting variation is to replace the cylinder with an ellipse. For a visible difference the ellipse
should have a fairly high eccentricity. File Ellipse-5.input shows how to construct this configuration.
We have set metal.cylinders.number to zero and then added

metal.ellipses.number = 1

metal.ellipses.xa = 49.3

metal.ellipses.ya = 49.3

metal.ellipses.xb = 50.7

metal.ellipses.yb = 50.7

metal.ellipses.sum = 2.5

metal.ellipses.medium = 1

The foci of the ellipse are located at (49.3, 49.3) and (50.7, 50.7). The distance between the foci is
1.9798989873, the long axis is 2.5, which yields the eccentricity of 1.9798989873/2.5 = 0.79195959.

Figure 29 shows fields Ex, Ey, and Hz for t = 325 in the vicinity of the ellipse. Figure 30 shows the

100

Figure 29: Scattering on an ellipse. From left to right: Ex, Ey, and Hz at t = 325.

Figure 30: Scattering on an ellipse: scattered field. On the left, the energy density at t = 325, on the right
Fourier accumulation of the energy density at t = 650 and ω = 0.62831853.

scattered fields, the energy density at t = 325 and then Fourier accumulation of the energy density at
t = 650 and ω = 0.62831853. There is only a slight asymmetry in the field.

What would happen if we filled the center of the computational domain with a grid of elliptical cylin-
ders? This configuration is described on file mEllipse-5.input. We have defined 25 closely spaced elliptical
cylinders of the same material and geometric characteristics as the one discussed above. The media layout
definition that utilizes the repeats construct looks as follows.

metal.ellipses.number = 5

metal.ellipses.xa = 43.3 43.3 43.3 43.3 43.3

metal.ellipses.ya = 43.3 46.3 49.3 52.3 55.3

metal.ellipses.xb = 44.7 44.7 44.7 44.7 44.7

metal.ellipses.yb = 44.7 47.7 50.7 53.7 56.7

metal.ellipses.sum = 2.5 2.5 2.5 2.5 2.5

metal.ellipses.medium = 1 1 1 1 1

metal.ellipses.repeats = 4 4 4 4 4

metal.ellipses.vx = 3 3 3 3 3

metal.ellipses.vy = 0 0 0 0 0

101

We had to enlarge the tagged region in order to accommodate all the ellipses. The new tag region definition
is:

tag.boxes.number = 1

tag.boxes.x_lo = 35

tag.boxes.y_lo = 35

tag.boxes.x_hi = 65

tag.boxes.y_hi = 65

We have also changed the partitioning of the level 0 domain in order to distribute the computation over
16 processors.

level0.nx = 400

level0.ny = 400

level0.nbx = 4

level0.x0 = 0

level0.y0 = 0

level0.delta_x = 0.25

level0.delta_y = 0.25

level0.time = 0

The refinement group has been modified, too.

refine.fill_ratio = 1.0

refine.block_factor = 2

refine.buffer_size = 16

refine.max_size = 100

We have made the max_size larger. Finally, because the generated data files are large, 150MB per snapshot,
we’ve increased image_frequency to 40, in order to reduce the total amount of data dumped.

When run on the University of Chicago IA64 cluster, the images were produced every 33 minutes, but
on the Jazz cluster, the same computation took 47 minutes per snapshot.

Figure 31 shows the energy density field at t = 330. This superlattice system has an effective refraction
index that is responsible for the strong deformation of the wave front, but there is no visible left-right
asymmetry in the scattered field. The reason for this is that the asymmetry of the individual elliptical
cylinders averages out. This is further illustrated in figure 32 that shows Fourier accumulation of the energy
density at t = 650 and ω = 0.62831853.

Throughout this simulation we have not observed high field values. Ex varied between −1.8 and +1.8,
and Ey and Hz varied between −1 and +1. The energy density varied between 0 and 2. The maximum
amplitude of the incident signal was 1. Stair-case spikes were visible but small, no more than 1.5%.

102

Figure 31: Scattering on a grid of elliptical cylinders. From left to right: the energy density at t = 330,
a magnified image of the energy density at t = 330 in the vicinity of the cylinders, image of the energy
density with colour map adjusted to show the scattered field at t = 330.

Figure 32: Scattering on a grid of elliptical cylinders. Fourier accumulation of the energy density at t = 650
and ω = 0.62831853. A magnified image on the right.

References

[1] Chombo: see http://seesar.lbl.gov/anag/chombo/

[2] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B. Serafini, and B. Van Straalen,
“Chombo software package for AMR applications design document,” Applied Numerical Algorithms
Group, NERSC Division, Lawrence Berkeley National Laboratory, Berkeley, CA, September 12, 2003

[3] Z. S. Sacks, D. M. Kinglsand, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for
use as an absorbing boundary condition,” IEEE Transactions on Antennas and Propagation, vol. 43,
December 1995, pp. 1460-1463

[4] Dennis M. Sullivan, “An unsplit step 3-D PML for use with the FDTD method,” IEEE Microwave
and Guided Wave Letters, vol. 7, July 1997, pp. 184-186.

[5] Dennis M. Sullivan, “Electromagnetic simulation using the FDTD method,” IEEE Press Series on
RF and Microwave Technology, IEEE Press, New York, 2000, ISBN 0-7803-4747-1

103

[6] Allen Taflove and Susan C. Hagness, Computational Electrodynamics, 2nd ed., Artech House, Boston,
2000.

104

Index

(Ex, Ey,Hz) mode, 7
shapes

debug version, 87
Gnuplot data files, 30, 83
input file

chat, 38
example, 28
format, 38
groups, 38
iterate, 41
level0, 40
metal, 46
output, 64
pml, 43
refine, 63
signal, 44
spectral, 64
tag, 59
time step, 42
unit of length, 40
watch, 38

layout semantics, 56
man pages, 38
metals

layout, 50
mask, 58

output, 29, 64
parallel execution, 66

on Jazz, 69
on University of Chicago TeraGrid node, 66

scripts, 27
signal types, 10
tag, 59
verbosity control, 29
wrapper scripts, 28, 35

ABCs, 3, 7
absorbing boundary conditions, 3
ADEs, 3
AMR, 3
auxiliary differential equation, 3

CFL criterion, 7, 18, 42, 99
Chombo, 3, 24
ChomboVis, 3, 72

color map, 94
data summary, 73
data zoom, 94
directory browser, 73
documentation, 73
isocontours, 75, 94
pysh scripts, 76
Python, 75
saving images, 75
using on Jazz, 72
visualization, 74, 93
VTK, 75

dielectrics, 4
Drude model, 4

FDTD, 3
Fortran-77, 3

GIF animations, 26, 34, 37, 75, 78
Gnuplot output, 24, 85

animation, 26, 86
example scripts, 27

file names, 24
header, 25
visualization, 25

HDF5 output, 24
animation, 75
file names, 24
hanging, 24
header, 24
visualization, 24, 74

human tissue, 4

Jazz, 27
front end nodes, 28
GIF animations, 33
Gnuplot

PostScript output, 31
PBS nodes, 27, 34
photonic-packages, 27
PVFS, 28

Lawrence Berkeley National Laboratory, 18
leap-frog discretization, 8
Lorentz model, 4, 46

105

D to E conversion, 6
number of fields required, 7

ADE, 5
discrete form of, 6
stability, 7

dimensionless coefficients, 5
media equation, 5
resonances, 4

arbitrary number of, 4
unit conversion, 5, 46

Martin, Dan, 18
Maxwell equations, 3, 47

discretized, 12
on the total/scattered field boundary, 13

elimination of ε0 and µ0, 4
frequency domain, 7
time domain, 8

media, arbitrary number of, 4
metals, 4

layout, 50
material parameters, 46

resonance frequency, 49
unit conversion, 49

MPI, 23
MPI-IO, 24

multigrid, 3, 16
averaging, 19, 20
boundary conditions, 19
building levels, 22

recursive procedure, 23
data flow between levels, 18, 19
disconnected patches, 17
distribution, 63, 79, 87
examples of use, 78, 87
flowing, 3
for multiscale problems, 87
generation, 59, 63
interpolation, 19
leap-frog, 18, 19, 90

recursive procedure, 20
levels, 59, 63

nesting, 91
noise, 22, 85
refinement, 17

criteria, 16, 22
restricted to the total field region, 9
savings, 95

static, 3
synchonized multistep, 18

nanophotonics Wiki, 28

parallel execution, 3, 23, 66
output, 3

HDF5, 68
postprocessing, 72

PBS script, 67
SMP, 23

PBS, interactive jobs, 28
perfectly matched layer, 3
photonic devices, 4
plasma, 4
PML, 3, 7, 43
PNG, conversion to GIF, 26
PPM, conversion to GIF, 77

resolution, cost of, 95, 97

scattering
on a cylinder, 86
on a grid of elliptical cylinders, 101
on a hollow cylinder, 99
on an elliptical cylinder, 100

signal
injection, 44
types, 10, 45

spectral response, 16, 94
speed of light, 3, 4
stair-case spikes, 94, 102

TeraGrid
Bigben

Cray XT3, 27, 34
Lustre, 27

Cobalt, SGI Altix, 34
DAC accounts, 34
DataStar, IBM SP, 34
University of Chicago node, 27

GPFS, 27
Itanium 2, 34
small file I/O, 37
speed comparison with Jazz, 37

WAN GPFS, 27
three-dimensional simulations, 3
total/scattered field regions, 3, 11

boundary corrections, 13, 14, 16

106

definition, 12
visualization, 94

units, 3, 5, 46

wave train length, 94

107

shapes

108

